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Introduction

This document is devoted to learning theory of Markov decision processes.
Say that someone, that shall be called Charlie, interacts with their environment by playing

actions. We assume that upon every decision, Charlie has perfect knowledge of the state of
the environment that they observe in its entirety. Upon playing, Charlie observes the effect of
their played actions by collecting rewards and observing how the system changes states. This
evolution (the state change and the produced reward) is stochastic yet memoryless. Specifically,
if Charlie sees the state St of the environment and decides to play some action At , then they see
a reward and the new state:

Rt ∼ r(St , At) and St+1 ∼ p(St , At) (1)

where r(St , At) and p(St , At) are respectively the reward distribution and transition kernel
associated to St upon playing At . The index t tracks the evolution of time. In other words,
the reward and state produced by the interaction, despite their random nature, are generated
independently of the past and only depend on the current state and played action: This is what
is meant when we say that the system is memoryless.

The goal of Charlie is to score maximally, to wander their environments and to do their best
at choosing actions. With time, one expects Charlie to play better and better actions, that Charlie
learns to play optimally. The question that we will investigate throughout this manuscript is:
How should Charlie behave? How does one learn such a system as efficiently as possible?

The system that we have just described with (1) is a Markov decision process and this will
be what models the environment of Charlie in the background. In the sequel, we will make a
strong assumption: The underlying environment exists and unflaggingly generates rewards and
states for Charlie to observe. This assumption is, in a few areas, so commonly adopted that it is
easily forgotten that it is even one. This is a frequentist formulation of the learning task, stating
that the ground truth exists before Charlie interacts with it, instead of being the by-product of
the interaction of Charlie with the environment; The latter is the Bayesian formulation. This
assumption will help to streamline the discussion and come along with its load of paperwork,
painting all this manuscript with the color of frequentism. The possibility of revoking frequentism
shall eventually remain open to escape mathematical blinkers, but will mostly be unquestionably
adopted to deepdive into the theory.

This pitfall being now clearly sidelined, we may reformulate our prior question: How should
Charlie behave in this frequentist formulation of a learning environment?

What this manuscript is about

This manuscript focuses on the motivated learning task. No restriction is put on what Charlie
can do, although Charlie may only play legal actions and can never reset the state of their
environment (unless there exists an action that does so) that keeps running forever. The rewards
that Charlie gathered are compared to what an all knowing planner could achieve with all the

10
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available computational power in the world to prepare their optimal strategy. Hence, the online
performance of Charlie are compared to those of an optimal offline strategy; The difference
between these two quantities is called the regret and is the reference benchmark in this document.
Accordingly and formally, the environment is modeled by an average reward Markov decision
process and Charlie’s quality of play is measured by the regret. Regret minimization for Markov
decision process is the one and only problem that is investigated in the following pages, where we
provide a fairly complete (and self-contained) treatment of model dependent and independent
settings. We also suggest new directions.

I have learned, over the past few years, that it is foolish to extensively explain what a
document does not do; The literature is too vast, communities are too broad and shattered,
hence you never know where your reader is coming from. Leaving a few keywords is the best I
can do: This manuscript is about (0) the theory of (1) frequentist online learning of (2) average
reward Markov decision processes (3) with finite state-action spaces in the (4) model dependent
and (5) model independent settings, and mostly with (6) model-based algorithms. The only
benchmark is (7) expected regret minimization. It also brings up a few notions such as (8) the
regret of exploration and (9) the sliding regret. Every single point has existing alternatives
with considerable literature. (0) Experimental and theoretical approaches to reinforcement
learning are quite different, and so are the communities. A nice entry to old-school methods
that are commonly used in reinforcement learning is Sutton and Barto (2018); these methods
are nowadays commonly coupled with deep neural networks to find hidden structures, because
practical applications commonly face tremendously large environments. (1) Frequentism is a
choice of design for the learning setting, assuming that the underlying model actually exists.
The main alternative is the Bayesian approach, where the underlying model is produced by the
interaction between the learner and their environment, or equivalently, that the environment
is random rather than fixed. (2) The average-reward criterion is not the only one for Markov
decision processes, and we can mention the finite horizon criterion, the discounted criterion,
total reward criterion, β-entropies, risk-aware settings and so on; again, all of them lead to
different learning problems. (3) By choosing the state-action space to be finite, we mean that
it is finite and small. This assumption is fragile and fails in many scenarios. For instance the
state-space may be infinite (in queuing theory), the state-action space may not be discrete
(e.g., the space of policies is parameterized by a parameter living in a continuous space) or the
state-action space may be larger than the number of atoms in the universe (e.g., in go or chess).
(6) Model-based algorithms learn their environment by estimating its structure. They are not the
only learning solution. Other approaches directly estimate the structure of the optimal policy,
which is computationally lighter, especially when the underlying environment is large. Such
approaches include Monte Carlo (MC) methods, Temporal Difference learning (TD) (see Sutton
and Barto (2018)) and the celebrated Q-learning (see Watkins and Dayan (1992); Watkins
(1989)), and won’t ever be discussed in this document. Lastly, (7) I have chosen to stick to regret
guarantees in expectation, which corresponds to Charlie’s learning problem, described above. In
parallel of regret minimization exists a significative research line on optimal policy identification,
and these works are close enough to our setting to be discussed here when times come. So, in
our regret minimization setting, the learner-environment system runs until the end of times and
the learner is trying to maximize the accumulated rewards. Optimizing the regret in expectation
when the system is only run once may sound strange. It is indeed not the only existing choice,
and many work studies regret minimization in high probability, a setting that I like less for the
simple reason that there is rarely any canonical choice of an acceptable probability of error.
Asking for regret guarantees in expectation has links with Bayesian formulations of the learning
task that, regrettably, I do not have the time to develop in these pages.

The reference that is the closest in spirit to this manuscript is the book of Lattimore and
Szepesvári (2020) which is dedicated to multi-armed bandits.
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Now, why this subject in particular? This is a troublesome question. The most candid answer
is perhaps that I read the seminal paper of Auer et al. (2009), that I didn’t understand it and
that my misunderstandings resulted in fractious and inconclusive attempts at improving their
algorithm from every angle I could. To this extent, Auer et al. (2009) is a great paper, because it
is very well-written and self-contained yet leaves many opportunities for improvements, that
I grew obsessed with. Now, I could say that average reward Markov decision processes are a
natural generalization of multi-armed bandits, that themselves are a recognized problem that
finds many real-word applications. And I could list all these real-worlds applications that Markov
decision processes can handle while multi-armed bandits cannot. But let me be honest in the
first place. This manuscript is not applied and by no mean ought to be applicable, although
many of the presented structural results should inevitably stand as the foundations of any serious
efficient and deployable algorithm for Markov decision processes. While some will claim that
the lack of applications is a weakness, I would say what they talk about is a different job, a job
that requires skills of a different range than those required to establish the results below. And
that such skills should be considered specifically rather than additionally. Furthermore, just
like it is easy to forget that the frequentist assumption is even an assumption, the question of
applications is an assertion in disguise; that a theoretical work is better if directly addressing
an application or a real-world problem. Behind this assertion hides a dogma: that theory, or
more generally science, should systematically find an application. Or said differently, because
this is really the question here, that every work of science should product something, that there
is a return on investment. We all see how thorny this is all getting. The question of a work’s
application is in essence following a capitalist and productivist dogma that we should all, as
people of science, be at the very least troubled with. Because this question is unquestionably
incredibly biased.

Overall, I would just say that this problem is interesting, incredibly rich and doesn’t seem
detached from reality. I hope you will find it interesting as well.

Outline of the manuscript and highlighted results

The manuscript is split in parts, themselves split in chapters again split into sections and
subsections. The graph of dependencies between chapters is given in Figure 1.

Part I
Chapters 1, 2 and 3

Chapter 5Chapter 4 Chapter 6

Chapter 7

Chapter 8

Chapter 10Chapter 9

Chapter 11

Chapter 12

Chapter 13 Chapter 14

Part II, minimax settingPart III, model dependent Part IV, local regrets

Figure 1: Outline of the manuscript. A plain line arrow means “you should read it before”
while a dashed arrow means “it’s better to read it before”.

The manuscript begins with Part I that introduces the basic material and concepts. It starts
with a self-contained treatement of average reward Markov decision processes (Chapter 1),
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introducing the notion of policies, gain, bias, Poisson and Bellman equations, etc.; It then
continues with concepts relative to statistical learning (Chapter 2) and quickly overviews the
state-of-the-art in the model dependent and independent settings. The last chapter (Chapter 3)
overviews standard tools of the literature, such as changes of measures and concentration
inequalities.

Things start with Part II, that treats the model independent setting, also called the minimax
setting. We provide a state-of-the-art lower bound scaling with the bias span independently
of the diameter in Chapter 4. Chapter 5 prepares the next two chapters by taking the time to
explain a technique used to bound the gain deviations. Chapter 6 is a more detailed overview
of existing algorithms and a complete introduction to the optimism-in-face-of-the-uncertainty
principle for Markov decision processes. It pinpoints a few issues in the literature and explains
the main challenges of the domain, later addressed in Chapter 7. In the last Chapter 7, we
provide a general method that is guaranteed to reach minimax optimal regret, called PMEVI.

We continue with Part III, that treats the model dependent setting. In Chapter 8, we
provide the first general regret lower bound for communicating Markov decision processes. It is
shown to be tight in Chapter 10, where we provide an algorithmic scheme (ECoE) that reaches
the lower bound arbitrarily close. This scheme is not implemented however, and we show in
Chapter 9 that the regret lower bound is intractable in general.

Finally, in Part IV, we investigate a new direction: the local behaviors of algorithms. We
notice that standard methods may play suboptimally for arbitrarily long periods of times, even
when they have already enough data to correctly identify the optimal policy. It means that
algorithms overshoot the duration of their exploration phases. In Section 11.3, we introduce
a new learning metric that measures the performance of learning algorithms when they start
exploration phases. In Chapter 12 and Chapter 13, we provide several ways of fixing the
existing algorithms, by changing the way episodes are managed, and show that these fixes do
not harm the minimax regret guarantees. In the last Chapter 14, we deepdive into the local
trajectorial behavior of algorithms in stochastic bandits. We show that the burst of suboptimal
plays observed in the beginning of Part IV cannot be removed for optimistic methods and that a
form of randomization is required.

Typographic conventions and writing choices

This manuscript is content heavy, especially regarding proofs and techniques. Parts used to
be chapters, and chapters used to be sections. It happens that many reader expect sections to
be streamlined, when I usually take the time for a few detours, to point subtleties and proof
techniques and ideas. Multiplying the number of chapters cleared the required room to embrace
my writing style. I estimate that a chapter corresponds to a reading session. This being said,
some chapters are short and easy to read (e.g., Chapter 5) and others are very technical and
should be approached carefully (e.g., Chapter 10).

There are overall many chapters, many notions and results in this manuscript. To ease the
eye, blocks and colors have been used.

A blue block contains novel content, that was developped by one of my recent works
and is not standard in the literature.

A pink block contains folklore content, i.e., results that are known in the literature.
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A plain block contains technical or secondary content, i.e., results or notions that are of
less importance than emphasized ones. They can be folklore or novel.

A black block contains a remark of first order importance, i.e., an important assumption
or notation or anything that, if missed, can perturb the understanding of the sequel.

Most results of this manuscript are proved, even when they are well known by the community.
There are three reasons for this. The first, truthful reason, is that everything is proved out of
obsession. I am simply incapable of using a result that I do not understand at least barely. The
second, perhaps more valuable to the reader, is that I could uniformize, unify and systematize a
technique while providing a fairly complete view of undiscounted infinite horizon reinforcement
learning. This technique is a systematic use of Poisson equations, Bellman equations, reward and
transition transforms, and careful choices of stopping times. Combined, these four ingredients
usually provide better results that what I could obtain with algebraic methods, that I ended up
dropping entirely. The third reason is obsession again, since by following the second reason
alone, I ended up with 90% of proved results. So I went for a near 100%, to obtain a complete,
self-contained document on the current state-of-the-art of small sized and undiscounted infinite
horizon reinforcement learning.

Even after all this work, with a satisfying conclusion to optimistic methods, after establishing
the first complete regret lower bound in communicating Markov decision processes, I feel that a
lot of work has still to be done. Yet every PhD ends at some point. It ends by freezing a view of
a comprehensible problem in a voluminous manuscript. So I’ve put aside many aspects of my
work that are too immature to see the light of day.

When one writes a scientific document of such size, one hopes that it will be of help for
others and that it will survive for a while, at least a little bit. So, what is the scientific purpose
of a PhD manuscript? I simply cannot accept that this is merely a proof of knowledge and skills.



Part I

Learning Markov Decision Processes

In this part, we present the fundamental material of the manuscript: Markov decision processes
and statistical learning theory. Chapter 1 is dedicated to Markov decision processes in the
average reward setting, introducing the notion of policies, gain, bias, Bellman gaps, optimal
policies, as well as algorithms to compute them. This introduction is self-contained and only
requires basic knowledge on probability theory and martingales. In Chapter 2, we provide
concepts from statistical decision theory, eventually instantiated to Markov decision processes.
We provide a formal definition of the regret, discuss the state-of-the-art in the model independent
(or minimax) and model dependent settings, and further pinpoint the main contributions of
my work regarding these two domains. The last Chapter 3 gathers a few classical results that
are nowadays the mandatory tools to design and analyze any learning algorithm for Markov
decision processes.

General Notations. Throughout the manuscript, the standard fields of numbers (natural
integers, signed integers, rational, reals) are denoted N,Z,Q,R respectively. Calligraphic letters
A ,B , . . . denote sets, the power set ofA is denoted 2A and ifA is a Borel set, P (A ) denotes
the Borel probability distributions on A . Probability and expectation operators are written
P(−),E[−]. ∥−∥p is the p-norm, KL(−||−) is the Kullback-Leibler divergence and 1(−) is the
indicator function. The letter e denotes the vector full of ones, ei is the i-th element of the
canonical basis, and the dot product between a co-vector p and a vector u is written pu, p · u
or even 〈p, u〉 depending on the sensibility of the surrounding equation to ambiguities. The
typography of function arguments is semantic rather than positional and a given letter will stick
to a unique semantic as much as possible. A function argument can momentarily move from
parenthesis to index if typographically more convenient although disclaimers are added as much
as possible to avoid confusion.
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Chapter 1

Foundations of Markov Decision
Processes

This chapter introduces general material for Markov decision process in the average reward
setting. This introduction is far from exhaustive and more is omitted than the converse. This
lack of exhaustiveness is a choice. The content of this section, together with the presented
technique, depicts a landscape of the theory of average reward Markov decision processes that is
complete enough to support the addition of learning considerations. We begin with a definition.

Definition I.1 (Markov decision process). A Markov decision process M = (S ,A , p, r)
is given by (1) a state space S , (2) an action spaceA ≡

⋃

s∈S A (s) together inducing a
pair space Z :=

⋃

s∈S {s}×A (s), (3) a transition kernel p :Z →P (S ) and (4) a reward
function r :Z →P (R).

We say that a Markov decision process (shortened as MDP or model) is finite if its pair space
is finite. It is said tabular if |A (s)| is the same for all s ∈ S . From now on, if not specified
otherwise, all the considered models will be finite. Compact action spaces will be a concern in
Parts II and IV but are cast out for now.

The model is typically controlled by a mechanism called “the controller” that picks legal
actions at each time step. The t-step state, action and reward are respectively denoted

St , At , Rt (I.1)

and we use the shorthand Zt := (St , At) for the t-step played pair, with t ∈ N. The history of
play at time t is the aggregation of all the observations prior to time t, and it is written Ot :=
(S0, A0, R0, . . . , St). The played action At is a function of Ot plus a possible extra-randomness
ω. Formally, At is σ(Ot ,ω)-measurable. The observed reward and states satisfy the Markov
property (I.2), meaning that they only depend on the current played state and action, rather
than on the full history and future ahead. Accordingly, the underlying stochastic model satisfies:

P
�

(Rt , St+1) ∈ U ×S ′ | Ot , At

�

= P
�

(Rt , St+1) ∈ U ×S ′ | St , At

�

=

∫

U×S ′
r(u|St , At)p(s

′|St , At) d(u, s′).
(I.2)

Remark that in (I.2), we implicitly assume that rewards and states are sampled independently.
This is not important. Instead, we could define q :Z →P (R×S ) a joint probability distribution
on rewards and states with marginals r and p and all the results of this manuscript would hold
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Figure 1.1: This is how MDPs will typically be represented in this manuscript. States are
circled nodes, actions are filled symbolic disks going out from states. Transition probabilities are
represented with arrows weighted by the probability of the transition, and mean rewards are
the weight (in dollars) on undirected edges between states and actions. The dollar symbol ($)
is used to break ambiguities between transition probabilities and rewards.

similarly. It is well known that, if rewards take finitely many values, a model transform can
convert back rewards and transitions to be independent, see Puterman (1994).

Important remark. All throughout Chapter 1, the underlying Markov decision process,
M , is fixed. Also, the dependency in M of the dynamics and various quantities that we
introduced is ignored within notations. This is out of typographic convenience.

1.1 Policies, gain, bias and the Poisson equation

The notion of policy is a simple way to model “a way to select actions”. In this section, we provide
a complete and self-contained introduction to the material required to properly understand the
behavior of a policy’s iterates.

Definition I.2 (Policies and randomized policies). A policy (π ∈ Π) is a map π : S →A .
A randomized policy (π ∈ ΠSR) is a map π : s ∈ S 7→ π(−|s) ∈ P (A (s)). If ambiguous,
the term policy always refer to deterministic policies.

It is also possible to make policies dependent on the histroy of play, making them similar
to the controller mentioned upstream. These history dependent policies will be discussed in
more detail in Chapter 2.

When the dynamics of the model are driven by a fixed (possibly randomized) policy π ∈ ΠSR,
the laws of the sequence of states, actions and rewards are completely determined by π and
the initial state s. When the distribution of the initial state is ν, the associated probability and
expectation operators under the dynamics imposed by π will be denoted Pπν (−) and Eπν [−]. By
driving the dynamics with a fixed policy, the process becomes a Markov reward process, which
is merely a Markov chain on S with an additive functional. Because it defines a Markov chain,
the adequate terminology can be imported from this theory, see Levin and Peres (2017) for a
general reference. This terminology will be crucial in the sequel.

Definition I.3 (Hitting time, recurrence, classification). Fix a randomized policy π ∈ ΠSR.

(1) The hitting time to S ′ ⊆ S is τ0
S ′ := inf{t ≥ 0 : St ∈ S ′};
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(2) The positive hitting time to S ′ ⊆ S is τS ′ := inf{t ≥ 1 : St ∈ S ′};
(3) A state s is recurrent under π if Pπs (∀n,∃m> n : Sm = s) = 1, or equivalently for finite state

space models, if Eπs [τs]<∞; Recurrent states form components induced by the equivalence
relation s ∼ s′ if Eπs [τs′]<∞; Non-recurrent states are said transient;

(4) A policy is recurrent if all its states are recurrent and in the same component; A policy is
unichain if it has a unique recurrent component; A policy is multi-chain otherwise.

The claims that are inherent to the above definition are standard and fairly easy to prove,
hence their proofs are omitted. Refer to Levin and Peres (2017) for further details.

A policy also induces a kernel and a reward vector. The definition below introduces notations.

Definition I.4 (Policy kernel and reward function). For π ∈ ΠSR, we define

(1) its kernel by pπ(s′|s) =
∑

a∈A (s) p(s
′|s, a)π(a|s); and

(2) its reward function is given by rπ(s) :=
∑

a∈A (s) r(s, a)π(a|s).

We further write Pπ the transition matrix associated to the kernel pπ.

1.1.1 The gain of a policy

In this manuscript, we are interested in the total rewards, consisting in the expected aggregate
rewards Eπs [

∑T−1
t=0 Rt] when the horizon T goes to infinity, without discount. This sum, as shown

downstream, is known to behave like T gπ(s)+hπ(s)+o(1) where gπ(s), hπ(s) ∈ R are quantities
respectively characterizing the first and second order growth of aggregate rewards and are
respectively called the gain and bias of the policy. We show first that the gain is well defined.

Definition I.5. The gain of a policy π ∈ ΠSR is the vector gπ ≡ gπ(M) given by:

gπ(s) := lim
T→∞

1
T

Eπs

�

T−1
∑

t=0

Rt

�

= lim
T→∞

1
T

Eπs

�

T−1
∑

t=0

r(Zt)

�

. (I.3)

This is not clear that the limit exists, so we provide a proof below. Remark that, if well
defined, the gain satisfies Pπgπ = gπ, so is within the (right) kernel of I − Pπ. The above result
can also be written in matrix form with using that Eπs [

∑T−1
t=0 Rt] = (

∑T−1
t=0 (P

π)t rπ)(s).

Proof. We show first that the limit exists for recurrent states, so pick s ∈ S recurrent. Let
gπ+(s) := lim sup 1

T Eπs [
∑T−1

t=0 Rt] the upper gain and gπ−(s) := lim inf 1
T Eπs [

∑T−1
t=0 Rt] the lower

gain. Let ε > 0. There exists Tε, as large as desired, such that

Eπs

�Tε−1
∑

t=0

Rt

�

≥ Tε(g
π
+(s)− ε).

Observe the following: If ν ∈ P (S ) is supported on the component containing s, then

Eπν

�Tε−1
∑

t=0

Rt

�

≥ Eπν

�Tε−1
∑

t=τs

Rt

�

− Eπν[τs]∥r∥∞ ≥ Eπν

�Tε+τs−1
∑

t=τs

Rt

�

− 2Eπν[τs]∥r∥∞

(†)
= Eπs

�Tε−1
∑

t=0

Rt

�

− 2Eπν[τs]∥r∥∞ ≥ Tε

�

gπ+(s)− ε−
2Eπν[τs]∥r∥∞

Tε

�

(I.4)

where (†) follows from the Markov property (I.2). Remark that Eπν[τs]≤maxs′ E
π
s′[τs] =: Ds <

∞ where s′ goes other the states in the same recurrent component than s. With this in mind,
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let T ∈ N and do the euclidian division of T with Tε, i.e., T = nTε +m with m< Tε. Using (I.4)
n times, we see that for all s′ in the same component than s, we have:

Eπs′

�

T−1
∑

t=0

Rt

�

≥ nTε

�

gπ+(s)− ε−
2Ds∥r∥∞

Tε

�

∼ T
�

gπ+(s)− ε−
2Ds∥r∥∞

Tε

�

. (I.5)

Let T →∞, then Tε →∞ and ε→ 0. We conclude that lim infEπs [
∑T−1

t=0 Rt] ≥ gπ+(s), hence
the infemum limit and the limsup are equal and the gain is well defined for s recurrent. In fact,
from (I.5) follows that gπ−(s

′)≥ gπ+(s) for every s′ in the same recurrent component than s. By
symmetry on s, s′, we deduce that gπ(s) = gπ(s′).

To extend the well-definition of (I.3) to transient states, the gain from transient states is
expressed with respect to the gain on recurrent states. Let S1, . . . ,Sm ⊆ S the disjoint recurrent
components under π and pick a witness si ∈ Si for each. Let τ := τ{s1,...,sm} the hitting time to
{s1, . . . , sm} and observe that Eπs [τ]<∞ for all s ∈ S , and that Pπs (Sτ ∈ Si) is the probability
that St eventually gets trapped in the component Si under π starting from s. We have:

1
T

Eπs

�

T−1
∑

t=0

Rt

�

=
1
T

Eπs

�

τ∧T−1
∑

t=0

Rt +
m
∑

i=1

1(Sτ ∈ Si)
T−1
∑

t=τ

Rt

�

=
m
∑

i=1

Pπs (Sτ ∈ Si)g
π(si) +O(1) (I.6)

concluding the proof.

1.1.2 Invariant measures, regeneration and empirical measures

The gain of a policy is intimately linked to the invariant measures of the same policy. By changing
the reward to the probing function r(s) = 1(s = s0) for some fixed s0 ∈ S , the associated gain
becomes the asymptotic ratio of visits which is a “natural” invariant measure of the policy.

Definition I.6. A (state-wise) invariant measure of a policy π ∈ ΠSR is a co-vector µ ∈ RS

such that µ · Pπ = µ, or equivalently, such that
∑

s∈S µ(s)p
π(s′|s) = µ(s′) for all s′ ∈ S . The

asymptotic empirical measure of a policy π ∈ ΠSR from an initial state s ∈ S is given by:

µπ(s′|s) := lim
T→∞

1
T

Eπs

�

T−1
∑

t=0

1(St = s′)

�

. (I.7)

In other words, invariant measures are elements of the (left) kernel of I − Pπ which a
linear space with dimension equal to the number of recurrent components. Observe that
well-definition of µπ(−|s) is a consequence of Definition I.5, proving by the meantime that
invariant measures exist. The above limit can also be written in matrix form by using the
formula Eπs [

∑T−1
t=0 1(St = s′)] = (

∑T−1
t=0 (P

π)t es′)(s). We provide a few useful results on invariant
measures below.

Proposition I.1 (Levin and Peres (2017)). Fix a randomized policy π ∈ ΠSR. Let S1, . . . ,Sm its
(disjoint) recurrent components.

(1) Given i ∈ {1, . . . , m}, the unique probability invariant measure supported in Si is µπ(−|si)
for si ∈ Si chosen arbitrarily; It is written µπ(−|Si);

(2) For all s ∈ S , µπ(−|s) =
∑m

i=1 Pπs (τSi
<∞)µπ(−|Si);

(3) (Regeneration property) For i ∈ {1, . . . , m} and si ∈ Si, we have

∀s ∈ Si, µπ(s|si) =
1

Eπsi
[τsi
]
Eπsi





τsi
−1
∑

t=0

1(St = s)



. (I.8)
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Proof. Using µPπ = µ, by induction on T follows that Eπµ[
∑T−1

t=0 1(St = s)] = Tµ(s) for all s ∈ S .
Statement (1) then follows as such: Fix si ∈ Si and remark that for all s ∈ Si,

Tµ(s) = Eπµ





τsi
∧T−1
∑

t=0

1(St = s) +
T−1
∑

t=τsi

1(St = s)



= O(1) + Tµπ(s|si) + o(T ).

Statement (2) is a rewriting of (I.6). For the regeneration property (Statement (3)), introduce

µ(s) := Eπsi
[
∑τsi

−1
t=0 1(St = s)]. We show that µPπ = µ. Let s ∈ S . We have:

∑

s′∈S

pπ(s|s′)µ(s′) :=
∑

s′∈S

pπ(s|s′)Eπsi





τsi
−1
∑

t=0

1(St = s′)



= Eπsi





τsi
−1
∑

t=0

∑

s′∈S

pπ(s|s′)1(St = s′)





= Eπsi





τsi
−1
∑

t=0

1(St+1 = s)





= Eπsi





τsi
−1
∑

t=0

1(St = s)



+ Eπsi
[1(St=1 = s)− 1(S0 = s)]

= Eπsi





τsi
−1
∑

t=0

1(St = s)



= µ(s).

By (1), µ is therefore proportional to µπ(−|Si). We conclude by normalizing.

The next result links asymptotic empirical measures to the gain.

Proposition I.2. For every randomized policy, we have gπ(s) = µπ(−|s) · rπ.

Proof. We have:

gπ(s) := lim
T→∞

1
T

Eπs

�

T−1
∑

t=0

Rt

�

= lim
T→∞

1
T

Eπs

�

T−1
∑

t=0

∑

s′∈S

1(St = s′) · rπ(s′)

�

= µπ(−|s) · rπ (I.9)

proving the claim.

1.1.3 The bias of a policy and the Poisson equation

In Definition I.5, it has been shown that the gain is the first term in the expansion of rewards
collected by a policy, with the formula Eπs [

∑T−1
t=0 Rt] = T gπ(s) + o(T ). For several reasons, it is

quite insufficient to provide a satisfying understanding of how Eπs [
∑T−1

t=0 Rt] behaves. Justice
cannot be made to the importance of the second order term of the expansion without advancing
the theory a little bit. However, its foreground role is foreshadowed by the example of Figure 1.2.

In Figure 1.2, there are two policies that have both the same gain gπ(s) = 1 for s ∈ {1,2}.
However, the policy taking the action (†) is clearly better than the one taking the action (‡) from
a transient viewpoint, by scoring 10 instead of 0 in the first round. This transient advantage is
encoded by the bias (sometimes called potential) of the policy, that encodes what the policy
scores in addition to the gain. Together, the gain and the bias of a policy form what is known as
the Poisson equation.
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1 2
†

‡
∗

10$

0$

1$

Figure 1.2: Beyond the gain: (†) is undoubtedly a better action than (‡).

Definition I.7. Let π ∈ ΠSR. There exists a bias function hπ such that µπ(−|s) · hπ = 0 for
all s ∈ S that satisfies the Poisson equation:

∀s ∈ S , gπ(s) + hπ(s) = rπ(s) + pπ(s)hπ (I.10)

Proof. Let S1, . . . ,Sm the disjoint recurrent components of π and pick a witness si ∈ Si for each.
Let τ the positive hitting time to {s1, . . . , sm}, i.e., τ := inf{t ≥ 1 : St ∈ {s1, . . . , sm}}. Let α ∈ Rm

and introduce the following quantity:

hπα(s) := Eπs

�

τ−1
∑

t=0

(Rt − gπ(St)) +
m
∑

i=1

αi1(Sτ = si)

�

. (I.11)

The vector hπα is a linear function of α. We check that (I.10) is satisfied by hπα.

(∗) := pπ(s)hπα − hπα(s)

=
∑

s′∈S

pπ(s′|s)hπα(s
′)− Eπs

�

τ−1
∑

t=0

(Rt − gπ(St)) +
m
∑

i=1

αi1(Sτ = si)

�

= gπ(s)− rπ(s) +
∑

s′∈S

pπ(s′|s)

�

hπα(s
′)− Eπs

�

τ−1
∑

t=1

(Rt − gπ(St)) +
m
∑

i=1

αi1(Sτ = si)

�

�

�

�

�

S1 = s′
��

.

The summand is null. Indeed, if s′ /∈ {s1, . . . , sm} then

Eπs′

�

τ−1
∑

t=0

(Rt − gπ(St)) +
m
∑

i=1

αi1(Sτ = si)

�

= Eπs

�

τ−1
∑

t=1

(Rt − gπ(St)) +
m
∑

i=1

αi1(Sτ = si)

�

�

�

�

�

S1 = s′
�

.

If s′ = si, then by (I.11) we see that:

hπα(si) = Eπsi

�

τ−1
∑

t=0

(Rt − gπ(St)) +
m
∑

i=1

αi1(Sτ = si)

�

(†)
= Eπsi





τsi
−1
∑

t=0

(Rt − gπ(St))



+αi

=
∑

s∈Si

Eπsi





τsi
−1
∑

t=0

1(St = s)



(rπ(s)− gπ(s)) +αi

(‡)
= Eπsi

[τsi
]µπ(−|Si) · (rπ − gπ) +αi

(§)
= αi

where (†) follows from the observation that when starting from Si, the dynamics are trapped in
Si under π; (‡) follows by regeneration (Proposition I.1); and (§) follows from Proposition I.2.
We conclude by setting αi := −µπ(−|Si) · hπ0 and hπ := hπα.
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The formula (I.11) is important and shows that the bias of a policy is obtained by normalizing
the rewards collected on pieces of the trajectory. An alternative definition, which is usually more
standard, is hπ(s) := limEπs [

∑T−1
t=0 (Rt − gπ(St))]. The limit is however not guaranteed to exist,

and this issue is circumvented by taking the Cesàro limit instead. Drazin inverses and Laurent
series are sometimes also used, but I prefer (I.11) to all these approaches, that I believe is true
to the stochastic nature of Markov reward processes.

Regarding the example of Figure 1.2, the bias of the policy choosing (†) is h† = (9, 0) while
the bias of the one choosing (‡) is h‡ = (−1, 0). We observe that h‡ ≤ h†.

1.2 Classification of Markov decision processes

Obviously, some policies are better than others. A policy may have better gain than another,
or two may have the same gain but one has better bias, or two may gave the same gain and
different biases, yet none has better bias than the other. In any case, this raises the question of
optimal policies. The difficulty of this question is a matter of the underlying structure of the
model. Markov decision processes are therefore classified into several categories.

Definition I.8. Markov decision processes are classified as follows:

(0) Ergodic models, where every policy is ergodic (recurrent and aperiodic);
(1) Recurrent models, where every policy is recurrent;
(2) Unichain models, where every policy is unichain;
(3) Communicating models, where fully supported randomized policies are recurrent, or

equivalently, where every state is reachable from any other under the right policy;
(4) Weakly communicating models, where fully supported randomized policies are

unichain, or equivalently, if the model is the union of a communicating model and a
bunch of states that are transient under every policy;

(5) Multi-chain models: All Markov decision processes.

(Note: A randomized policy is fully supported if π(a|s)> 0 for all (s, a) ∈ Z .)

The inclusion of classes is pictured in Figure 1.3.

Ergodic Recurrent

Unichain

Communicating

Weakly
communicating Multi-chain

Figure 1.3: The classification of Markov decision processes.

In the reinforcement learning literature, the terminology ergodic Markov decision process
is often wrongly used in place of recurrent, making it inconsistent with the theory of Markov
chains. In Markov decision processes, the aperiodicity property is not very important and can
always be artificially achieved via model transformations leaving the gain and the bias invariant.
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Most of the manuscript focuses on the communicating classes with the exception of Part II
that steps within the world of weakly communicating models.

1.3 The Bellman equation and optimal policies

We start with one of the most important result of this theory.

Theorem I.3 (First order Bellman theorem). Assume that M is communicating. There
exists a policy π ∈ Π with constant gain gπ ∈ Re solving the Bellman equations:

∀s ∈ S , gπ(s) + hπ(s) = max
a∈A (s)

{r(s, a) + p(s, a)hπ}. (I.12)

Proof. We use an argument belonging to the large family of policy improvement mechanisms.
Pick π0 arbitrarily then construct a sequence of policy (πn) following the rules below:

(1) If gπn /∈ Re then, using the communicativity of M , construct πn+1 as a deterministic policy
converging to the component of πn with maximal gain, from where πn+1 copies πn.

(2) If gπn ∈ Re, then consider ∆πn(s, a) := gπn(s)+hπn(s)− r(s, a)− p(s, a)hπn . If there exists
a pair (sn, an) ∈ Z such that ∆πn(sn, an) < 0, then pick πn+1 as the copy of πn changed
with πn+1(sn) = an; Otherwise, set πn+1 = πn.

We claim the following. (∗) If πn+1 is obtained via (1), then gπn < gπn+1 for the product order
on RS ; and (∗∗) if πn+1 ̸= πn is obtained via (2), then either gπn < gπn+1 , or gπn = gπn+1 and
hπn < hπn+1 . In other words, the pair (gπn , hπn) is increasing for the lexicographic order unless
πn = πn+1. SinceΠ is finite, it follows from (∗,∗∗) that the sequence (πn) is eventually stationary,
converging to a π ∈ Π satisfying gπ ∈ Re and (I.12), proving the result.

We are therefore left with proving our claims (∗) and (∗∗). (∗) is obvious and we focus on
(∗∗). For all s ∈ S , we have

Eπn+1
s

�

T−1
∑

t=0

Rt

�

= Eπn+1
s

�

T−1
∑

t=0

�

gπn(St) +
�

eSt
− p(St , At)

�

hπn −∆πn(St , At)
�

�

= T gπn(s)− Eπn+1
s

�

T−1
∑

t=0

1(St = sn)

�

∆πn(sn, an) + Eπn+1
s [hπn(s)− hπn(ST )].

(I.13)

We immediately see from (I.13) that gπn ≤ gπn+1 . If sn is recurrent under πn+1 then the expected
visit counts of sn satisfy Eπn+1

s [
∑T−1

t=0 1(St = sn)] ∼ Tµπn+1(sn|sn) hence grow linearly with T ;
We deduce that gπn(sn) < gπn+1(sn). Otherwise, sn is transient under πn+1 so gπn = gπn+1 and
hπn(s) = hπn+1(s) when s is recurrent under πn+1. For all s ∈ S , we have

Eπn+1
s

�

T−1
∑

t=0

Rt

�

= Eπn+1
s

�

T−1
∑

t=0

rπn+1(St)

�

(†)
= T gπn(s) + Eπn+1

s [hπn+1(s)− hπn+1(ST )] (I.14)

where (†) invokes the Poisson equation of πn+1 (Definition I.7). Since hπn+1(s) = hπn(s) for s a
recurrent state of πn+1, we further have Eπn+1

s [hπn+1(ST )] = Eπn+1
s [hπn(ST )] + o(1) when T →∞.

Combined with (I.13) and (I.14), we obtain

hπn+1(s) = hπn(s) + Eπn+1
s

�

T−1
∑

t=0

1(St = sn)

�

∆πn(sn, an) + o(1) (I.15)

for all s ∈ S . We conclude accordingly.
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The consequences of this result are striking. The Bellman equations guarantee the existence
of optimal policies of the first order, that there exists deterministic optimal policies and motivate
the introduction of the Bellman operator. However, the very strength of the result is rather that
it gets rid of the necessity to take the history of play into account: Policies are not required to
depend on time or on the history of play to achieve optimality. That is, the smartest learner
cannot get higher asymptotic average reward than maxπ∈Π gπs , even if they make use of the
whole history of play. This will be the basis of the regret benchmark in the next Chapter 2

Theorem I.3 is incomplete however, because the result is too coarse to provide a satisfying
treatment of what happens at the second order, i.e., at the order of the bias hπ. This is the
subject of the next paragraph.

1.3.1 Optimal policies, gain and bias and higher order Bellman equations

In this manuscript, we distinguish between three forms of optimalities: gain optimality, Bellman
optimality and bias optimality. The assumption “M is communicating” is technical and can be
removed up to fixing the definition of Bellman optimal policies.

Definition I.9. Let π ∈ ΠSR and assume that M is communicating.

(1) π is gain-optimal (π ∈ Π∗) if gπ(s)≥maxπ′∈ΠSR gπ
′
(s) for all s ∈ S ;

(2) π is Bellman-optimal (π ∈ Π∗Bell) if gπ ∈ Re and π satisfies (I.12);
(3) π is bias-optimal (π ∈ Π∗bias) if π ∈ Π∗ and hπ(s)≥maxπ′∈Π∗ hπ

′
(s) for all s ∈ S .

Gain optimal policies are policies with maximal asymptotic average reward whatever the
initial state. This is the first order optimality. At second order is bias optimality, consisting in
gain optimal policies with maximal bias among gain optimal policies (from every state). Sitting
right in-between gain and bias optimalities is the notion of Bellman optimality, which is not
standard but was pointed out as an important refinement of gain optimality in the definition of
Whittle and Gittins index in Markovian bandits, see Gast et al. (2023). Bellman optimality is
closer to bias optimality than gain optimality however, as a Bellman optimality can be made
bias optimal up to infinitesimal reward perturbation (see Boone and Gaujal (2023a)). The three
are formally related as follows.

Proposition I.4. For M communicating, we have Π∗(M) ⊇ Π∗Bell(M) ⊇ Π
∗
bias(M). In general, the

inclusions are strict.

Proof. This proof echoes the proof of Theorem I.3. Let π a Bellman optimal policies. Then its
gaps ∆π(s, a) := gπ(s) + hπ(s)− r(s, a)− p(s, a)hπ are non-negative, so whatever the learner
and initial state, we have

E

�

T−1
∑

t=0

Rt

�

= E

�

T−1
∑

t=0

�

gπ(St) +
�

eSt
− p(St , At)

�

hπ −∆π(St , at)
�

�

≤ T gπ(s) + E[hπ(S0)− hπ(ST )]

(I.16)
where s ∈ S is arbitrary. Instantiating the learner to whatever policy and taking the limit in T ,
we deduce that gπ is maximal among π ∈ ΠSR.

Now pick a bias optimal policy π. It has optimal gain by definition, so gπ ∈ Re. Assume ad
absurdum that π is not Bellman optimal. Then, one enters the case (2) of the improvement
process of the proof Theorem I.3 that constructs a policy π′ with better gain or bias than π,
which is not possible by definition. A contradiction.

To see that the inclusion are strict in general, observe first that the example provided
by Figure 1.2 provides an example of gain optimal policy (‡) which is not Bellman optimal.
Figure 1.4 provides an example of Bellman optimal policy which is not bias optimal.
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Figure 1.4: A Markov decision process (with deterministic transitions) where Bellman and
bias optimalities differ. The policy (∗, ‡) is Bellman optimal with bias (0,−2) while the policy
(†, §) is bias optimal with bias (1, 0), hence (∗, ‡) is not bias optimal.

From Proposition I.4 follows that the Bellman equations (I.12) are incapable of capturing
bias optimality completely, hence the optimal bias (Definition I.11) cannot be defined right from
Theorem I.3 and will have to wait for the finer Theorem I.5. Ever since the paper of Blackwell
(1962), it is known that Bellman equations can be pushed to higher orders and Theorem I.3 can
be generalized. By seeing the bias of a policy hπ as a cost, we can define the next order bias as
the bias of the Markov reward process (−hπ, Pπ).

Definition I.10. Let π ∈ ΠSR. The 0-th order bias of π is the standard bias hπ0 := hπ. For n≥ 1,
the n-th order bias of π is the bias (see Definition I.7) of the Markov reward process (−hπn−1, Pπ).
In particular, the higher order biases are related by the Poisson equation:

∀s ∈ S , hπn (s) = −hπn−1(s) + pπ(s) · hn. (I.17)

We can prove a stronger version of Theorem I.3.

Theorem I.5 (Second order Bellman theorem). Assume that M is communicating. There
exists a policy π ∈ Π with constant gain gπ ∈ Re satisfying the nested Bellman equations:

∀(s, a) ∈ Z , gπ(s) + hπ(s)≥ r(s, a) + p(s, a)hπ

∀(s, a) ∈ Zπ0 , − hπ1 (s)≥ hπ(s) + p(s, a)hπ1
(I.18)

where (s, a) ∈ Zπ0 if gπ(s) + hπ(s) = r(s, a) + p(s, a)hπ.

Proof. The proof is a replicata of the one of Theorem I.3 with increased difficulty. Pick π0
arbitrarily then construct a sequence of policy (πn) following the rules below, where we denote
the 0-th order gaps ∆πn(s, a) := gπn(s) + hπn(s) − r(s, a − p(s, a)hπn and the 1-th order gaps
∆
πn
1 (s, a) := hπn

1 (s) + hπn(s)− p(s, a)hπn
1 .

(1) If gπn /∈ Re then, using the communicativity of M , construct πn+1 as a deterministic policy
converging to the component of πn with maximal gain, from where πn+1 copies πn.

(2) Else, if there exists a pair (sn, an) ∈ Z such that ∆πn(sn, an) < 0, then pick πn+1 as the
copy of πn changed with πn+1(sn) = an;

(3) Else, if there exists a pair (sn, an) ∈ Z
πn
1 with ∆πn

1 (sn, an)< 0, then pick πn+1 as the copy
of πn changed with πn+1(sn) = an;

(4) Otherwise set πn = πn+1.

The argument is very similar. We show that unless πn = πn+1, the triplet (gπn , hπn , hπn
1 ) is

increasing for the lexicographic order and conclude by finiteness of Π. Because (1) and (2) have
already been analyzed in the proof of Theorem I.3, we focus on (3). Under (3), πn+1 is only
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playing pairs z such that ∆πn(z) = 0, so

Eπn+1
s

�

T−1
∑

t=0

Rt

�

= T gπn(s) + hπn(s)− Eπn+1
s [hπn(ST )]

(†)
= T gπn(s) + hπn(s)− Eπn+1

s [1(ST = sn)]∆
πn
1 (sn, an) + Eπn+1

s

�

hπn
1 (ST )− hπn

1 (ST+1)
�

where (†) follows by definition of ∆πn
1 and by the observation that ∆πn

1 (s,πn(s)) = 0 by the
higher order Poisson equation (Definition I.10). Summing for T = 1, . . . , T ′ provides

Eπn+1
s

�

T ′−1
∑

T=0

T−1
∑

t=0

Rt

�

=
T ′(T ′ − 1)

2
gπn(s) + T ′hπn(s) + Eπn+1

s

�

T ′−1
∑

T=0

1(ST = sn)

�

∆
πn
1 (sn, an)

+ hπn
1 (s)− Eπn+1

s

�

hπn
1 (ST ′)

�

.

(I.19)

We recognize µπn+1(sn|s) with 1
T ′E

πn+1
s [

∑T ′−1
T=0 1(ST = sn)] (for T ′ large enough). Meanwhile,

using the two first order Poisson equations, we have the analogous formula:

Eπm
s

�

T ′−1
∑

T=0

T−1
∑

t=0

Rt

�

=
T ′(T ′ − 1)

2
gπm(s) + T ′hπm(s) + hπm

1 (s) + o(1) (I.20)

for m ∈ {n, n+1}, where the o(1) is Eπm
s [h

m
1 (ST ′)]. Remark that the quadratic term in (I.19) and

(I.20) must be the same, hence gπn = gπn+1 . Now, similarly to the analysis of (2) in the proof of
Theorem I.3, we distinguish between µπn+1(sn|s)> 0 or zero.

If µπn+1(sn|s) > 0, then Eπn+1
s [

∑T ′−1
T=0 1(ST = sn)] grows linearly with T ′ and in (I.19), the

sublinear terms in T ′ can be ignored. By combining (I.19) and (I.20) for m = n, n + 1, we
conclude that hπn(s)< hπn+1(s) for every s such that µπn+1(sn|s)> 0.

If µπn+1(sn|s) = 0, then Eπn+1
s [

∑T ′−1
T=0 1(ST = sn)] = O(1) so hπn(s) = hπn+1(s) necessarily. If in

addition sn is reachable from s, then Eπn+1
s [

∑T ′−1
T=0 1(ST = sn)] = Θ(1) and hπn

1 (s)< hπn+1
1 (s).

Overall, the triplet (gπn , hπn , hπn
1 ) is increasing for the lexicographic order, and we conclude

by using that |Π|<∞.

Proposition I.6. Any policy satisfying the nested Bellman equation (I.18) is bias optimal. In
particular, bias optimal policies exist.

The proof of the above is skipped because bias optimal policies won’t appear much in this
manuscript. The required material is already ready to be extracted from the proof of Theorem I.5.
In the end, the optimal bias and gain are well defined. The result of Theorem I.5 can be extended
at arbitrary order, leading to higher and higher orders of optimalities. At the very top of this
hierarchy sits the Blackwell optimality that goes back to Blackwell (1962) that is optimal at
every order, see Puterman (1994). However, beyond bias optimality, these optimality refinement
are hard to interpret; Also, they are impossible to learn Boone and Gaujal (2023a), so we
won’t extend much on the subject. Gain and bias optimalities are enough for the scope of this
manuscript.

Definition I.11. We define the optimal gain g∗ and optimal bias h∗ as the gain and bias
function of any gain-optimal and bias-optimal policies respectively.

1.3.2 The Bellman operator and Value Iteration

The description of optimal policies provided so far is qualitative. We have shown that optimal
policies can be obtained by solving the Bellman equations, of first order to obtain gain opti-
mal policies, and of up to second order to obtain bias optimal policies. Moreover, the proof
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of Theorem I.3 provides a method that converges to Bellman optimal policies with a policy
improvement scheme. This pseudo-algorithm is a variant of the famous Policy Iteration (PI),
due to Howard (1960), and has been studied throughout although it is still the subject of many
open questions, see Christ and Yannakakis (2023) and references therein for a recent overview
of the literature. However, PI is not the numerical scheme that we will build upon in this
manuscript. Instead, we mainly work with Value Iteration (VI), initially due to Bellman (1957)
for which the literature is also immense, see Goyal and Grand-Clement (2023) and references
therein for recent references. There is a third approach based on Linear Programming that
can be traced back to d’Epenoux (1960), showing that gain-optimal policies can be obtained in
polynomial time; An approach that we won’t cover in this manuscript. Puterman (1994) covers
the basics of all three.

1.3.2.1 The Bellman operator

The operator that is underlying Value Iteration is the Bellman operator.

Definition I.12. The Bellman operator is the map L : RS → RS given by:

∀u ∈ RS , Lu(s) := max
a∈A (s)

{r(s, a) + p(s, a)u} (I.21)

For a given u ∈ RS , any randomized policy π ∈ ΠSR supported in actions achieving the above
maximum is called a greedy response to u.

Definition I.13. The span semi-norm of u ∈ RS is sp(u) :=max(u)−min(u).

In light of Theorem I.3, first order Bellman equations (I.12) can simply be stated as the
existence of u ∈ RS such that Lu−u ∈ Re, or in other words, as the existence of a span fixpoint
of L. Conversely, span fixpoints of the Bellman operators are solutions of the first order Bellman
equation. The Bellman operator is computed in time O(|S |2) which is cheaper than computing
the gain and the bias of a policy. It has many remarkable algebraic properties.

Proposition I.7. Below, ≤ denotes the product order on RS , u, v are generic vectors of RS and
λ ∈ R is a generic scalar.

(1) L is monotone: u≤ v⇒ Lu≤ Lv;
(2) L is non span-expansive: sp(Lu− Lv)≤ sp(u− v);
(3) L is linear: L(u+λe) = Lu+λe.

Proof. (1) and (3) are immediate. For (2), remark that Lu= rπu + Pπuu for some πu ∈ Π. So,

Lu− Lv ≤ (rπu + Pπuu)− (rπv + Pπv v)≤ Pπu(u− v).

Symmetrically, Lv−Lu≤ Pπv(v−u). Hence, sp(Lv−Lu)≤ sp((Pπu−Pπv)(u−v))≤ sp(u−v).

Proposition I.8. Assume that sp(Lu− u)≤ ε for some ε≥ 0. Then every greedy response π to u
has ε-optimal gain, i.e., gπ ≥ g∗ − εe.

Proof. By assumption, there exists g ∈ Re and w ∈ RS satisfying 0 ≤ w ≤ εe such that
u+ g ≤ Lu ≤ u+ g + w. By choice of π, we have rπ + Pπu = Lu, so rπ ≥ g + (I − Pπ)u. By
induction on T ≥ 0, we derive:

gπ(s)∼
1
T

Eπs

�

T−1
∑

t=0

Rt

�

= es ·
1
T

T−1
∑

t=0

rπ ≥ es ·
�

gπ +
1
T

�

I − (Pπ)T
�

u
�

∼ g(s).
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So gπ ≥ g. Now, let π∗ a bias-optimal policy. We have rπ
∗
+ Pπ

∗
u≤ Lu≤ u+ g +w, so

g∗(s)∼
1
T

Eπ
∗

s

�

T−1
∑

t=0

Rt

�

= es ·
1
T

T−1
∑

t=0

rπ
∗
≤ es ·

�

gπ
∗
+

T−1
∑

t=0

(Pπ
∗
)t w+

1
T

�

I − (Pπ
∗
)T
�

u

�

.

In the RHS, we have
∑T−1

t=0 (P
π∗)t w≤

∑T−1
t=0 (P

π∗)Tεe ≤ Tεe, hence g∗ ≤ g + εe.

1.3.2.2 Value Iteration and Lazy Value Iteration

In summary, by Proposition I.8, greedy responses to near span fixpoints of the Bellman operator
are nearly gain optimal. By the mean time, the Bellman operator is non-expansive in span by
Proposition I.7. If it where span contracting, one would be guaranteed to converge to a span
fixpoint by iterating it. This is the idea behind Value Iteration (Algorithm I.1): iterate L until a
near span fixpoint is reached.

Algorithm I.1 Value Iteration (VI)
Parameters: A precision ε > 0, an (optional)
initialization u0;

1: if u0 is not initialized then u0← 0 · e;
2: for n= 1,2, . . . , do
3: un← Lun−1;
4: if sp(un − un−1)< ε then break;
5: end for
6: return un.

Algorithm I.2 Lazy Value Iteration (LVI)
Parameters: A precision ε > 0, an (optional)
initialization u0;

1: if u0 is not initialized then u0← 0 · e;
2: for n= 1,2, . . . , do
3: un←

1
2 Lun−1 +

1
2un−1;

4: if sp(un − un−1)<
1
2ε then break;

5: end for
6: return un.

0 1

1$ †

0$‡

Figure 1.5: A single policy Markov decision process where Value Iteration (Algorithm I.1) is
not converging. From u0 = (0,0) we find that un := Lnu0 = (n, n− 1) with sp(un) = 1.

The stopping condition “sp(un − un−1)< ε” only makes sense if the Markov decision process
is communicating, otherwise the Bellman operator is not even guarantee to have a span fixpoint.
Even if a span fixpoint exists, Value Iteration is not guaranteed to converge in general and the
main issue is the periodicity of optimal policies. An example is given with Figure 1.5. If all
optimal policies are aperiodic however, then the algorithm converges.

Proposition I.9. If all optimal policies are aperiodic and the model is communicating, then, for all
u0 ∈ RS ,

w∞ := lim
n→∞

(Lnu0 − ng∗ − h∗) (I.22)

exists and Value Iteration (Algorithm I.1) converges in finite time.

Proof. The proof is a simplified and streamlined version of Puterman (1994)’s. Introduce the
error term wn := un − ng∗ − h∗. Unfolding the definition of un and rearranging terms, we find:

wn =max
π∈Π
(rπ − g∗ + (Pπ − I)h∗ + Pπ(un−1 − (n− 1)g∗ − h∗)) =max

π∈Π

�

−∆∗π + Pπwn−1

�

(I.23)

where∆∗π := g∗− rπ+(I−Pπ)h∗ is the first order Bellman error of π against π∗. By Theorem I.3,
∆∗π ≥ 0 so wn ≤maxπ∈Π Pπwn−1 and by induction, wn ≤max(w0)e. Also, by picking π∗ a bias
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optimal policy, we have ∆∗π∗ = 0 and wn ≥ Pπ
∗
wn−1 so by induction, wn ≥min(w0)e. It follows

that the sequence (wn) is bounded. Let w+ := limsup wn and w− := lim inf wn.
We start by showing that w+(s) = w−(s) if there exists a policy π ∈ Π under which s

is recurrent. Let S ′ the corresponding recurrent class. For all s′ ∈ S , we have wn(s′) ≥
(Pπwn−1)(s′) so by induction, wm(s′)≥ ((Pπ)m−nwn)(s′). By aperiodicity of π, it can be shown
Levin and Peres (2017) that limT→∞ es′ · (Pπ)T = µπ(−|S ′) for all s′ ∈ S ′. Therefore, for
?, ! ∈ {+,−}, we have

∀s′ ∈ S ′, w? ≥ µπ(−|S ′) ·w! (I.24)

so µπ(−|S ′)(w+−w−) = 0. Since w+−w− ≥ 0 and µπ(s′|S ′)> 0 for s′ ∈ S ′, we have w+ = w−

on the support of µπ(−|S ′).
We now extend that result to all states. For all ε > 0 and s ∈ S , there exists n arbitrarily

large such that w+(s)− ε≤ wn(s). Moreover, wn(s) =maxπ(−∆∗π + Pπwn−1)(s)≤maxπ(−∆∗π +
Pπw+)(s) + ε if n is large enough. So w+ ≤ maxπ(−∆∗π + Pπw+) + 2εe. Similarly, we show
w− ≥maxπ(−∆∗π + Pπw−)− 2εe. Accordingly,

w+ ≤max
π∈Π

�

−∆∗π + Pπw+
�

and w− ≥max
π∈Π

�

−∆∗π + Pπw−
�

. (I.25)

Let π ∈ Π achieving maxπ∈Π(−∆∗π + Pπw+). By (I.25), rπ ≥ g∗ + (I − Pπ)(h∗ +w+) so π is gain
optimal and have an aperiodic transition matrix Pπ. Moreover, by (I.25) again, we have:

0≤ w+ −w− ≤ Pπ(w+ −w−). (I.26)

So by induction, 0 ≤ w+ − w− ≤ 1
n

∑n−1
k=0(P

π)n(w+ − w−) for all n ≥ 1, so by Definition I.6,
0 ≤ w+(s) − w−(s) ≤ µπ(−|s) · (w+ − w−). Since π is gain optimal, we already know that
w+ = w− on the support of µπ(−|s), hence w+(s) = w−(s).

The aperiodicity condition is actually never a problem, because Markov decision processes
can be forced to be aperiodic without changing the optimal gain, optimal bias nor optimal
policies (of arbitrary order), and this aperiodicity transform can be artificially simulated by a
lazy version of Algorithm I.1, called Lazy Value Iteration (Algorithm I.2). The question of the
convergence speed of these algorithms is more difficult and won’t be covered. Empirically, the
convergence of Lazy Value Iteration is very fast.

Proposition I.10. Given a Markov decision process M and λ ∈ (0, 1), its λ-lazy transform is the
model Mλ with the same state and action spaces, with rewards rλ(s, a) := λr(s, a) and transitions
pλ(s, a) := λp(s, a) + (1−λ)es.

(1) All policies of Mλ are aperiodic;
(2) For all π ∈ ΠSR, we have λgπ(M) = gπ(Mλ) and hπ(M) = hπ(Mλ);
(3) Π∗(M) = Π∗(Mλ),Π∗Bell(M) = Π

∗
Bell(Mλ) and Π∗bias(M) = Π

∗
bias(Mλ).

In particular, if M is communicating, then Lazy Value Iteration (Algorithm I.2) stops in finite time
on every entry with un such that sp(Lun − un)< ε.

The proof can be found in Puterman (1994).

1.4 Comments

We only have scratched the surface of the theory of average reward Markov decision processes.
We could talk more deeply about further optimality notions, the characterization of optimal
policies or their computation. However, I estimate that the material introduced so far will be
sufficient for what follows in this document.
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In this manuscript, the objective function is E[R1 + . . .+RT ] when T →∞ and the problem
is attacked head on. This is not how it is usually done, and many classical references of the
literature (such as Arapostathis et al. (1993); Bertsekas (2012); Bertsekas and others (2011);
Kallenberg (2016); Puterman (1994)) treat the average reward criterion as the limit of easier
reward criteria, for instance the finite horizon criterion E[R1 + . . .+ RT ] for T <∞, or the
discounted criterion E[

∑∞
t=1 γ

t−1Rt] for γ < 1. These three reward criteria are perhaps the
big three of objective functions in Markov decision processes, that are all the basis of different
reinforcement learning problems. However, the average reward criterion is arguably the most
general among these three, because the finite horizon and discounted criteria can be rewritten
as an average reward criterion up to simple Markov decision process transforms, while the
converse is not true in general. Beyond gain optimality exist optimalities of higher order that
we have already mentioned. There is the bias optimality (Definition I.9), higher order bias
optimalities, but also higher order discounted optimalities Puterman (1994) and Blackwell
optimality Blackwell (1962), the latter being obtained as the limit of discounted optimalities
when the discount coefficient γ goes to 1. Perhaps because they are finer than gain-optimality, the
learnability properties of these higher order criteria are limited, see Boone and Gaujal (2023a).

Regarding the computation of optimal policies, Value Iteration (Algorithm I.1) is far from
the only way to compute gain-optimal policies. Such policies can also be computed with Policy
Iteration (PI) with a mechanism which is similar in spirit to the proof of Theorem I.3. Value
Iteration and policy iteration are iterative methods and their time complexities are difficult to
control. Optimal policies can also be obtained as the solutions of a linear program, by looking
for the invariant measure µ (on Z ) maximizing the linear function

∑

z µ(z)r(z), hence the
complexity of finding a gain-optimal policy is polynomial in the size of the Markov decision
process.

I would also add that there is more to finite state-action spaces. In many simple problems,
the state space is countable rather than finite, or the action space is compact rather than discrete.
Time may not be discrete either. Moreover, the tools presented above are not designed to handle
an explosion of the number of states or actions, and when the underlying model is too complex,
the set of policies is usually parameterized by a lower dimensional parameter that is latter
optimized, using gradient-descent-like algorithms Sutton and Barto (2018).



Chapter 2

Foundations of Reinforcement
Learning in MDPs

In Chapter 1, we have introduced the basic concepts and results for Markov decision processes
under the average reward criterion, as well as algorithmic solutions to compute optimal policies.
Given a communicating model, Lazy Value Iteration (Algorithm I.2) can be used to compute
optimal policies that can be deployed to navigate the Markov decision process optimally. This
can only be done if the Markov decision process is known, because Lazy Value Iteration requires
access to the reward function r and the transition kernel p. What if none of them are accessible?
Then, no optimal policy may be computed beforehand as one has to interact with the environment
to have any idea of its structure. Whenever the underlying model is unknown, one would expect
a good agent to try actions at first and eventually play better and better actions. In any case, in
face of an unknown environment, the choice of actions shall depend on past observations.

Definition I.14. A plannerais any random sequence of randomized policies π= (πt)t≥0
such that πt is σ(Ot ,ω)-measurable where Ot := (S0, A0, R0, . . . , St) is the history of play
and ω is the inner randomness of the algorithm. Their set is denoted ΠHR.

asometimes called history dependent policy, or agent, or controller, or learner depending on commu-
nities and the authors’ preference.

The question of the design of efficient planners that converge to optimal play has a long
history. Making a complete survey goes way beyond the intended scope of this manuscript,
although dusting and sorting the past literature would definitively help to trace all the various
ideas that shape the theory of reinforcement learning in Markov decision processes. I nonetheless
willingly took the time to go back the timeline to find the oldest possible work that can be
considered as learning problems in Markov decision processes. Unsurprisingly, it goes back to
multi-bandits. Multi-armed bandits (single state models) can be traced back to the works of
Robbins (1952); Thompson (1933), and partially known Markov decision processes to Fox and
Rolph (1973) at least, themselves extending methods of Mallows and Robbins (1964). In the
70’s, the main focus was on planners achieving optimal gain, i.e., making sure that

∑T−1
t=0 Rt

approaches T g∗(s) when T goes to infinity. For quite a few decades however, achieving optimal
gain is considered insufficient and has been replaced with the question of the convergence speed.
How close can

∑T−1
t=0 Rt be to T g∗(s)? Up to this day and for probably many years still, the

difference is measured by the regret of Robbins (1952), here instantiated in the style of Auer
and Ortner (2006), that measures the asymptotic performance of an optimal policy T g∗(s) to
the actual performance of the planner

∑T−1
t=0 Rt .

32
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Definition I.15 (Auer and Ortner (2006)). Assume that M is communicating. The regret
under M is given by

Reg(T ; M) = T g∗(s0)−
T−1
∑

t=0

Rt (I.1)

where the dynamics are driven by a planner π = (πt) navigating on M from some initial
state s0 ∈ S . Whenever the underlying model M is clear in the context, the dependence in
M is dropped.

The expected regret grows sub-linearly on M if and only if the gain of the planner (πt) is at
least g∗ on M . We say that the planner is no-regret on M .

Important remark. From now on, the dependency in M of the dynamics, of various
quantities such as the gain, bias and gaps has to be made cleared, because M is hidden
to the learner and is only known to live in a plausible space of models. We will write
Eπ,M[−],Pπ,M (−), gπ(s, M) etc. to account for this dependency. When M is not ambiguous
however, this dependency may be dropped. This is for typographic convenience only.

2.1 Regret, gaps and classification of pairs

The structure of the underlying model can be exploited to rewrite the regret into a quantity
that is less subjected to stochasticity. Indeed, even if the planner only picks optimal actions,
the quantity

∑T−1
t=0 Rt will deviate because the rewards gathered from a given state-action pair

won’t exactly match the expected value, and the stochastic transitions will drive the planner to
states that may differ from what the planner expects. Said differently, the regret may punish or
grant the planner for events over which they have very little to absolutely no control. This is
cumbersome even from the viewpoint of the overseer, because all this noise makes the actual
planner’s playing quality more difficult to evaluate. To overcome these difficulties, we introduce
the first order regret which is much less noisy than the regret yet shadows its expectation, see
Proposition I.11. The definition of the first order regret is based on the notion of first order
Bellman gaps (sometimes gaps or disadvantage) that we introduce now.

Definition I.16. Assume that M is communicating. The first order Bellman gap, or gap, of
a state-action pair (s, a) ∈ Z is given by:

∆∗(s, a) := g∗(s) + h∗(s)− r(s, a)− p(s, a)h∗. (I.2)

By Theorem I.3, ∆∗ ≥ 0.

These gaps are analogous to Q-values in finite horizon and discounted Markov decision
processes. It quantifies how close is a pair to optimality. The aggregate gaps account for the
dominant part of the regret in expectation, see Proposition I.11 below.

Proposition I.11. Assume that M is communicating. Whatever the planner (πt), the
expected regret satisfies:

E(πt )[Reg(T )] = E(πt )

�

T−1
∑

t=0

∆∗(Zt)

�

+ E(πt )[h∗(S0)− h∗(ST )]. (I.3)



34 Chapter 2. Foundations of Reinforcement Learning in MDPs

The term FOReg(T ) :=
∑T−1

t=0 ∆
∗(Zt) of the RHS of (I.3) is called the first order regret.

Proof. We write:

E(πt )

�

T g∗(s)−
T−1
∑

t=0

Rt

�

= E(πt )

�

T−1
∑

t=0

(g∗(St)− r(Zt))

�

= E(πt )

�

T−1
∑

t=0

��

eSt
− p(Zt)

�

h∗ +∆∗(Zt)
�

�

and we conclude using that E(πt )[
∑T−1

t=0 (eSt
− p(Zt))h∗] = E(πt )[h∗(S0)− h∗(ST )].

In (I.3), the term E(πt )[h∗(ST )− h∗(S0)] is bounded while the regret usually is not, hence
this is a second order term that will be utterly ignored. Because the gaps are non-negative, the
first order regret is non-decreasing and count the number of times the algorithm has picked
suboptimal pairs weighted by how much they are suboptimal. Remark that the first order regret
increases when, and only when pairs with positive gaps are picked. As a consequence, even in
full knowledge of the model and history, the planner cannot obtain better gain than g∗. The
same can also be proved at higher order (for the bias) by using Theorem I.5, showing that there
is no need to rely on the history to score optimally and that comparing the performance of a
planner to the performance of the best deterministic policy is relevant: The planner cannot best
the optimal policy and no-regret planners are those achieving optimal gain.

We conclude this paragraph by providing a classification of pairs in the communicating
setting, motivated by this discussion.

Definition I.17. The pairs of a communicating Markov decision process are classified as:

(1) Suboptimal pairs Z− := {z ∈ Z :∆∗(z)> 0};
(2) Weakly-optimal pairs Z ∗ := {z ∈ Z :∆∗(z) = 0};
(3) Optimal pairs Z ∗∗ := {(s, a) ∈ Z : ∃π ∈ Π∗,π(s) = a and µπ(s|s)> 0}. .

Namely, suboptimal pairs are pairs with positive gap, necessarily transient under gain-optimal
policies and it is by playing those that the first order regret increases; Weakly-optimal pairs
are pairs with null gap, that do not make the first order regret increase hence are “cost-free to
play”; Optimal pairs are pairs that are recurrent under at least one gain-optimal policy. When
the model is communicating, optimal pairs are weakly optimal too, i.e., Z ∗∗ ⊆ Z ∗. The novel
part of this classification is the distinction between weakly optimal pairs and optimal pairs. This
distinction is shown to be very important in Part III, that develops the idea that the very structure
of gain optimal policies is provided by Z ∗∗ rather than Z ∗.

2.2 Statistical decision theory, consistency and robustness

We have a big problem:

Fix a policy π and consider the planner (πt) = (π,π, . . .). For any model M in which
π is optimal, (πt) has null first order regret and bounded expected regret on M.

So that’s it. For every model, there exists a planner with no regret on that model. So I can stop
the manuscript here and we can all go home.

Well, of course not.
The planner introduced above plays π whatsoever and disregards accumulated observations

whatsoever. So, if they happen to play in another environment M† where π is not gain-optimal,
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then the regret of (πt) will grow linearly. This is an overfitting problem. The quality of play of
the planner does not generalize to other models than M . To quote (Lattimore and Szepesvári,
2020, §34), “the fundamental challenge in learning problems is that the true environment is
unknown and [planners] that are optimal in one environment are not usually optimal in another.”
This raises a few interesting questions: What defines an acceptable planner? Are there optimal
planners? How small can the regret of an acceptable planner be? Can it be achieved?

This problem is formalized by borrowing concepts from statistical decision theory. Consider
a space of Markov decision processes M of state-action space Z so that planners ΠHR can
universally run on all elements onM . M will be called the space of plausible environments,
and plays the role of an assumption; One assumes that the true model M belongs toM . The
considered loss function ℓ :M ×N×ΠHR→ R+ is the expected first order regret:

ℓ(M , T, (πt)) := E(πt ),M

�

T−1
∑

t=0

∆∗(Zt ; M)

�

. (I.4)

The capacity of a planner to learn optimal actions is categorized depending on the behavior
of their associated loss on the class of plausible environments.

Definition I.18. Fix a state-action space Z and letM a space of models with state-action
space Z (we writeM ∈M(Z )). A planner (πt) is

(1) admissible if, for every other planner (π′t), there exists M ∈ M , T ∈ N such that
ℓ(M , T, (πt))≤ ℓ(M , T, (π′t)), and dominated otherwise;

(2) consistent if, for every M ∈M , ℓ(M , T, (πt)) = o(T ) when T →∞;
(3) robust if sup{ℓ(M , T, (πt)) : M ∈M}= o(T ) when T →∞.

The concept of (1) admissibility, that comes from statistical decision theory, is not very
satisfying regarding learning for two reasons. First, it does not exclude the overfitting concern
mentioned upstream and, second, it is too binary. It labels as dominated many planners that,
despite being barely dominated by other planners, are worth investigating for exogenous
reasons, e.g., computational advantages. From a learning perspective, (2) consistency and
(3) robustness are more pertinent. Consistency states that, whatever the model among plausible
environments, the regret eventually grows sublinearly, hence the planner eventually converges
to optimal play. The convergence speed is not prevented from varying greatly from a model to
another and consistent algorithms are subjected to unstable performance, motivating robustness.
Robustness is stronger, stating that convergence to optimal play is uniform in the class of plausible
environments. A high level representation of these three classes of planners is represented in
Figure 2.1. Remark that all these classes depends onM . An algorithm that is consistent (or
robust) onM is not guaranteed to be consistent (or robust) on a super-class ofM . This is very
natural: Some planners may exploit an a priori structure of the environment to learn faster
(if the environment is a queuing system, or has deterministic rewards, or has deterministic
transitions, etc.), and generalize badly to environments where this structure is absent. To some
extent, while overfitting a planner to a specific model is questionable, overfitting a planner to a
class of plausible models is actually recommended.1

Regarding Definition I.18, robustness is a stronger property than consistency. Consistency is
more flexible, making the design of consistent algorithms easier than robust algorithms and it is
pretty common that, for a given model, the asymptotic regret of a consistent planner is better
than the ones of their robust kins. The analysis is also so different that they pretty much live in

1This follows the well-known learning principle: “Always make sure to use the problem’s structure that you are
aware of.”
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Figure 2.1: Artistic representation of overfitting, consistency and robustness. The x-axis is the
underlying model and the y-axis is the associated loss of the planner for an arbitrary (fixed)
time horizon T . Excepted the dominated planner, all planners are admissible.

different worlds. Consistency is linked to model dependent settings, where one takes a planner,
fix a plausible model, then derives a regret bound that is specific for that model. Robustness is
linked to model independent settings, where one takes a planner then derives a regret bound
that holds simultaneously for all plausible models. For both family of settings, our work process
is the following:

(1) Can we design a lower bound for this class of planners and plausible environments?
(2) How closely can this lower bound be approached (tight upper bound)?

Designing lower bounds is important. A lower bound provides insight in what makes the
learning task difficult. It obviously depends on the considered class of plausible environments:
The larger the class is, the larger is the lower bound. However, given an established lower
bound, it is equally important to prove its tightness by providing a planner with a performance
upper bound matching the lower bound. Otherwise, the possibility that the lower bound misses
an important part of the learning task cannot be rejected. This being said, upper bounds are
usually much harder to derive than lower bounds in reinforcement learning.

Important remark. In the sequel, we assume thatM is a space of Markov decision spaces
sharing the same (finite) state-action space Z , and assume that all elements ofM have
Bernoulli rewards. The second assumption could be changed to any single parameter
exponential family of distributions, such as Gaussian distributions, Poisson distributions
or finite-support distributions. Bernoulli rewards are rich enough to make the problem
interesting, make a few (isolated) argument easier and spare a few additional notations.

2.3 The model independent setting, or minimax setting

I sometimes refer to the model independent setting as the minimax setting, because the goal is
to find a planner (πt)with robust regret guarantees, i.e., its regret on the worst possible instance
supM∈M ℓ(M , T, (πt)) is as small as possible. This is about finding a planner approaching:

inf
(πt )∈ΠHR

sup
M∈M

E(πt ),M[Reg(T ; M)] (I.5)

hence the terminology “minimax”. To approach (I.5), it must first be estimated. Especially,
this is done using lower bounds, that tell how small the robust regret may be hoped to be.
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Lower bounds of (I.5) can be traced back to Vogel (1960) at least, already providing a precise
minimax analysis of two-armed bandits with Bernoulli rewards. As far as Markov decision
processes are concerned, the first minimax lower bound is due to the seminal paper of Auer
et al. (2009) for communicating MDPs, relating the minimax regret to the time horizon, the size
of the state-action space and the diameter of the model, which is the expected time to travel
from a state to another within the environment. That bound generalizes the minimax lower
bound on multi-armed bandits.

Definition I.19 (Auer and Ortner (2006)). The diameter of a Markov decision process is:

D(M) :=max
s ̸=s′

min
π∈Π

Eπ,M
s [τs′]. (I.6)

The diameter is finite if, and only if M is communicating.

Theorem I.12 (Auer et al. (2009)). Let c > 0 and let MD(c) the class of all Bernoulli
rewards models with state-action pairs Z with diameter less than c. Then:

inf
(πt )∈ΠHR

sup
M∈MD(c)

E(πt ),M[Reg(T ; M)] = Ω
�Æ

(c ∨ 1)|Z |T
�

. (I.7)

For tabular state-action space, this lower bound is more commonly written
p

DSAT , where
S denotes the cardinal of the state space and A := |A (s)| is number of actions per state. What is
important to remember from Theorem I.12 is that the dependency in the time horizon is

p
T , the

dependency in the size of the model is
p

|Z | and we have an extra dependency on the diameter,p
D. This last dependency is related to the fact that the gain of a communicating model is

D-Lipschitz and that the Lipschitz coefficient D is tight for some models. In the same paper Auer
et al. (2009), the authors provide an algorithm (UCRL2) with minimax regret DS

p

AT log(T )
and has been the basis for many works, including Bartlett and Tewari (2009); Bourel et al.
(2020); Filippi et al. (2010); Fruit et al. (2020, 2018); Talebi and Maillard (2018); Tossou et al.
(2019); Zhang and Ji (2019), improving the method of Auer et al. (2009) to obtain sharper
regret upper bounds. However, not all works on robust planners originate from Auer et al.
(2009). I provide in Table 2.1 a compendium of a few recent results.

In Table 2.1, we observe that bounds of many kind coexist. Some depend on the diameter,
others on the span of the bias function, others on the mixing time and I have actually simplified
a few exotic bounds that are relying on notions of distribution mismatch coefficient, local
diameters, bias variances (etc.) to obtain finer regret bounds. Some algorithms use prior
information, some do not; Some work for weakly communicating models, others only in the
communicating setting, some need the underlying model to be ergodic. Observe that in the
ergodic setting, the mixing time frequently appears in regret guarantees, while it is absent from
the lower bound. The presence of this extra term is not mild because the mixing time cannot be
bounded as a function of the diameter, meaning that the robust regret bound is not “compatible”
with the lower bound; I will say that the bound is not adapted to the model class.

Another subsequent observation is that the dependency of all bounds with respect to the
time horizon T is off by a polylogarithmic factor of T . The current tendency is to hide it under a
eO(−) that I quite dislike, because by no means are these logarithmic factors mere artifacts of the
analysis. Furthermore, the eO(−) further swallows all polylogarithmic factors, including log(D)
and log(S) that we should keep track of. Going from

p

T logα(T ) to
p

T is not trivial and the
analysis of algorithms has to be significatively reworked. While I am not aware of any attempt
for Markov decision processes, the removal of the

p

log(T ) is the subject of a few papers on
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Algorithm Robust regret Class of models Extra assumptions

REGAL, Bartlett and Tewari (2009) HS
p

AT log(T ) weakly communicating intractable, knowledge of H
UCRL2, Auer et al. (2009) DS

p

AT log(T ) communicating -
KL-UCRL, Filippi et al. (2010) DS

p

AT log(T ) communicating -
KL-UCRL, Talebi and Maillard (2018) H

p

SAT log(T ) + S2A2 tmix log(T ) ergodic -
SCAL, Fruit et al. (2018) HS

p

AT log(T ) weakly communicating knowledge of H
EBF, Zhang and Ji (2019)

p

HSAT log(T ) weakly communicating intractable, knowledge of H
POLITEX, Abbasi-Yadkori et al. (2019) (tmix)3D(SA)

1
2 T

3
4 ergodic -

UCRL2B, Fruit et al. (2020) S
Æ

DAT log2(T ) communicating -
UCRL3, Bourel et al. (2020) S

p

DAT log(T ) communicating -
OPTIMISTIC-Q, Wei et al. (2020) H(SA)

1
3 T

2
3 ergodic -

OSP, Ortner (2020)
Æ

tmixSAT log2(T ) + S3A( tmix

µ2
min
)2 log2(T ) ergodic intractable

MDP-OOMD, Wei et al. (2020)
p

(tmix)3(D ∨ S)AT log(T ) ergodic knowledge of tmix and D

O-PSRL, Agrawal and Jia (2023) DS
Æ

AT log6(T ) communicating -

UCB-AVG, Zhang and Xie (2023) HS5A2
Æ

T log2(T ) weakly communicating -

PMEVI, Part II
p

HSAT log(T ) weakly communicating -

Diameter lower bound
p

DSAT communicating Auer et al. (2009)
Mixing lower bound

p

tmixSAT ergodic see Part II
Bias lower bound

p
HSAT weakly comm. see Part II

Table 2.1: A compendium of algorithms with theoretical robust guarantees. We use the
shorthand H ≡ sp(h∗).

multi-armed bandits, see Audibert and Bubeck (2009); Garivier et al. (2022).

Among all the works listed in Table 2.1, only one method gets close to the lower bound:
EBF of Zhang and Ji (2019); However EBF is completely intractable. The algorithm that I will
present in Part II is, to some extent, an improved and tractable version of EBF.

Overall, Table 2.1 embodies the variety of robust regret guarantees and upon evoking mixing
times, I have foreshadowed that the terms appearing in the upper bound do shape the class
of models over which the robustness guarantees are valid. This leads to two definitions. The
first notion that I introduce is minimax complexity, that quantifies the learning hardness of a
class of Markov decision processes, see Definition I.20. The second definition, see Definition I.21
contains notions of adapted learners and minimax optimality and provide formal grounds to
three ideas: (1) prior knowledge, (2) robust bounds correlated to the minimax complexity of a
model class and (3) planners achieving minimax optimal regret up to multiplicative factors.

Definition I.20. Let Z a state-action space and letM ∈M(Z ). The minimax complexity
ofM is:

K(M ) := lim inf
T→∞

inf
(πt )∈ΠHR

sup
M∈M

E(πt ),M[Reg(T ; M)]
p

T
(I.8)

Note that this definition anticipates on the
p

T scaling of the regret.

Definition I.21. Let Z a state-action space. Let Θ ⊆ Rd a parameter space andM (Θ)≡
(M (θ) : θ ∈ Θ) a parameterized family of model spaces withM (θ) ∈M(Z ). A planner
(πt) ∈ ΠHR(Z ) is:

(1) robust relatively toM (Θ) if ∀θ ∈ Θ, supM∈M (θ ) E
(πt ),M[Reg(T ; M)] = o(T );
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(2) (α,β)-adapted toM (Θ) (where α≥ 0 and β ≥ 0) if

sup
θ∈Θ

lim sup
T→∞

supM∈M (θ ) E
(πt ),M[Reg(T ; M)]

K(M (θ ))α
Æ

T logβ(T )
< C <∞; (I.9)

(3) β -minimax optimal onM (Θ) if it is (1,β)-adapted;

Above, C is a generic constant that is independent of |Z |.

The content of Definition I.21 is new hence must be discussed. The definition considers
classes of models parameterized by a parameter θ , that will typically track the maximum
diameter, bias or mixing times, or even several at once. To understand this parametrization,
let us focus on (1), the notion of parametric robustness. This strengthens the prior notion
of robustness (Definition I.18) that is incapable of explaining the difference between UCRL2,
a knowledge-free algorithm, and SCAL, that requires knowledge on sp(h∗) to have sub-linear
regret guarantees. For instance, the regret upper bound of UCRL2 from the original work of
Auer et al. (2009) can be written as: Fix S := {1, . . . , S} and A (s) := {1, . . . , A}. If MD(c)
denotes the class of all Bernoulli reward models with state-action space Z and with diameter less
than c, then the algorithm UCRL2 satisfies:

∀c > 0, sup
M∈MD(c)

EUCRL2,M[Reg(T ; M)] = O
�

cS
Æ

AT log(T )
�

. (I.10)

Accordingly, the performance bound of UCRL2 is valid for several classes of models at once: It is
valid for a family of classes parameterized by the maximal diameter. This property is characteristic
of algorithms that do not require prior information. Meanwhile, the regret upper bound of SCAL
from Fruit et al. (2018) can be written as: Fix S := {1, . . . , S} andA (s) := {1, . . . , A}. IfMh∗(c)
denotes the class of all Bernoulli reward models with state-action space Z and with sp(h∗) ≤ c,
then, for all c > 0, the algorithm SCAL(c) satisfies:

sup
M∈Mh∗ (c)

ESCAL(c),M[Reg(T ; M)] = O
�

cS
Æ

AT log(T )
�

. (I.11)

It means that UCRL2 is robust relatively toMD(R) while SCAL(c) is robust relatively toMh∗(c)
but not relatively toMh∗(R). For instance, PMEVI is robust relatively toMh∗(R).

The second notion, (α,β)-adaptivity builds on the idea that the robust regret guarantees
grow with the minimax complexity of the class, hence that the parameterized family of model
classes is sound to express the robustness properties of the planner, although the dependency
may be sub-optimal (α > 1). When α= 1, the algorithm is said β-minimax optimal and the
robust regret guarantees of the planner can only be improved up to numerical factors. For
instance, the regret bound of KL-UCRL provided by Talebi and Maillard (2018) is not adapted
to the class of ergodic models parameterized by their bias span, because there exist models with
small bias span but arbitrarily large mixing time. The compendium of Table 2.1 is enriched in
light of Definition I.20 and Definition I.21 in Table 2.2.

Remark that planners with regret O(T 2/3) or O(T 3/4), such as POLITEX or OPTIMISTIC-Q
are not considered to be adapted. This is because if their dependency in the time horizon
essentially means the their upper bound is of a different nature than the lower bound, hence
the two are hard to compare. In Part II, I will further refine the lower bound of Theorem I.12
and describe the algorithm PMEVI: where it comes from and why it is minimax optimal.

Contributions of the manuscript. The main contributions of this manuscript regarding the
minimax setting are summarized with Theorems I.13 and I.14. The first Theorem I.13 shows
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Algorithm Adapted parametrized class Range of θ α,β

REGAL(c) wkly com., H ≤ θ θ ≤ c untractable, α= 2,β = 1
UCRL2 communicating, D ≤ θ θ <∞ α= 2,β = 1,
KL-UCRL communicating, D ≤ θ θ <∞ α= 2,β = 1,
KL-UCRL ergodic, H ≤ θ1, tmix ≤ θ2 θ1,θ2 <∞ α= 2,β = 1
SCAL(c) wkly com., H ≤ θ θ ≤ c α= 2,β = 1
EBF(c) wkly com., H ≤ θ θ ≤ c untractable, α = 1,β = 1
POLITEX - - -
UCRL2B communicating, D ≤ θ θ <∞ α= 2,β = 2
UCRL3 communicating, D ≤ θ θ <∞ α= 2,β = 1
OPTIMISTIC-Q - - -
OSP ergodic, tmix ≤ θ1, tmix

µmin
≤ θ2 θ1,θ2 <∞ α= 1,β = 2

MDP-OOMD(c1, c2) ergodic, tmix ≤ θ1, D ∨ S ≤ θ2 θ1 ≤ c1,θ2 ≤ c2 α= 3,β = 1
O-PSRL communicating, D ≤ θ θ <∞ α= 2,β = 6
UCB-AVG wkly com., H ≤ θ θ <∞ α= 10,β = 2

PMEVI wkly com., H ≤ θ θ <∞ α = 1,β = 1

Table 2.2: Extra information on the compendium of Table 2.1.

that the regret complexity of out the class of communicating models with bounded bias span
(i.e., such that sp(h∗) ≤ c) is scaling with the square root of the minimum between the bias
span and the diameter. More specifically, ifM (c, d) denotes the set of communicating Markov
decision processes satisfying sp(h∗) ≤ c and D ≤ d, we show that K(M (c, d))) = Ω(

p
c ∧ d).

This result is more universal than the lower bound of Auer et al. (2009). In Auer et al. (2009),
the authors show that the regret complexity of a class of models with bounded diameter (i.e.,
such that D ≤ d) scales with the square root of the diameter. Their result can be written as
K(M (∞, d)) = Ω(

p
d). It is well known (and it will be discussed in Chapter 4) that the bias span

is bounded by the diameter, henceM (∞, d) ⊆M (d, d) hence the lower bound of Auer et al.
(2009) is a result on the diagonal of the parametrized family of models spaces (M (c, d))c,d≥0.
Theorem I.13 extends their lower bound outside of the diagonal. Theorem I.14 provides an
1-minimax algorithm for the same parametrized family of model spaces, proving that the regret
complexity is indeed

p
c ∧ d up to a

p

log(T ) term, that I conjecture to be artificial. 2

Theorem I.13 (Regret lower bound). Let Z :=
⋃

s∈S {s} × {1, . . . , A} a tabular pair space
with S ∈ 3N and A≥ 3. DenoteM (c, d) the set of communicating Markov decision processes
M with pair space Z satisfying sp(h∗(M))≤ c and D(M)≤ d. Then:

K(M (c,∞)) = Ω
�p

cSA
�

when c→∞. (I.12)

Theorem I.14 (Regret upper bound). Let Z :=
⋃

s∈S {s} × {1, . . . , A} a tabular pair space.
DenoteM (c, d) the set of communicating Markov decision processes M with pair space Z
satisfying sp(h∗(M))≤ c and D(M)≤ d. Then:

lim sup
T→∞

sup
M∈M (c,∞)

EPMEVI,M[Reg(T )]
p

T log(T )
= O

�p
cSA

�

when c→∞. (I.13)

2Theorem I.14 is actually stronger, because the bound which is provided is uniform on the worst value of the
diameter.
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2.4 The model dependent setting

In parallel of the model independent setting, robust minimax guarantees and minimax optimal
algorithms, the other existing frequentist approach is model dependent. Given a model, what
are the best performance that a learner may hope to achieve? In Section 2.2, we have discussed
that this question is only interesting if the focus is restricted to consistent planners, otherwise
nothing prevents the planner from over-specifying their performance to a given model at the
price of suffering from catastrophic performance for another. Similarly to the minimax approach,
the history of model dependent analysis of unknown Markov decision processes has a long
history. Among a long line of works, the paper of Lai and Robbins (1985) stands out as the first
model dependent lower bound, written just as in the style of what is done today. This paper,
despite being specific to multi-armed bandits, settled a lower bound machinery that has been
applied to various generalizations of multi-armed bandits, including our own in Part III, hence
worth elaborating.3

What is arguably the most important baseline of all lower bounds is a strengthened version
of consistency (Definition I.18).

Definition I.22 (Lai and Robbins (1985)). Fix a state-action space Z and letM ∈M(Z )
a space of models. A planner (πt) is said strongly consistent onM if, for all M ∈M and
all ε > 0, E(πt ),M[Reg(T ; M)] = o(T ε).

For bandits with Bernoulli rewards, the result of Lai and Robbins (1985) can equivalently be
formulated as such.

Theorem I.15 (Lai and Robbins (1985)). Assume that Z := {1} × {1, . . . , A}, i.e., defines
the structure of a multi-armed bandit and letM the space of all models with state-action
spaces Z and Bernoulli rewards. For every strongly consistent planner (πt) and M ∈M
with interior rewards (i.e., 0< r(z)< 1 for all z ∈ Z ), we have:

lim inf
T→∞

E(πt ),M[Reg(T ; M)]
log(T )

≥
∑

z∈Z

∆∗(z; M)
kl(r(z), maxz∗∈Z r(z∗))

. (I.14)

The bound is tight, in the sense that there exists a strongly consistent planner achieving
it. Lai and Robbins (1985) provide one. Such planners are said asymptotically optimal
and many optimal planners are known to this date; Many are simpler than Lai and Robbins
(1985)’s solution. We can find the famous Thompson Sampling (TS) of Kaufmann et al. (2012);
Thompson (1933), KLUCB of Garivier and Cappé (2011); Maillard et al. (2011), MED of Honda
and Takemura (2010), IMED of Honda and Takemura (2015) or RB-SDA of Baudry et al. (2020,
2023) to list a few.

In the world of Markov decision processes, the works of Lai and Robbins (1985) have been
generalized in several directions but interestingly, a big part of the literature seems to hit a
significant barrier: recurrent models. Agrawal et al. (1988) generalizes the lower bound and
the planner of Lai and Robbins (1985) to ergodic models, obtaining a tight lower bound. The
approach of Agrawal et al. (1988) is policy-wise, in the sense that every policy is seen as an
arm, each explored in turn. The number of policies growing exponentially in |Z |, this approach
suffers from obvious combinatorial drawbacks. This is addressed by Burnetas and Katehakis
(1997), that decomposes the lower bound pair-wisely instead (see Theorem I.16), and provides

3This is slightly incorrect, because the lower bound machinery has been modernized since. Nowadays, lower-
bounds are systematically obtained with information theoretic techniques of various kind.
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a pair-wise indexed asymptotically optimal planner. Specifically, at time t, the planner associates
an index It(St , a) to every playable action, then plays the action with highest index. The indexed
algorithm of Burnetas and Katehakis (1997) was reworked and mixed with more modern
bandit methods a few decades later by Pirutinsky (2020), that apparently drove very little
attention. Meanwhile, this indexed strategy was mixed to the works of Honda and Takemura
(2015) and improved by Pesquerel and Maillard (2022), producing the algorithm IMED-RL.
This algorithm is asympotically optimal for ergodic models just as Burnetas and Katehakis (1997)
while displaying great empirical performance. Following the works of Burnetas and Katehakis
(1997), the state-of-the-art stays frozen for about a decade. Close to simultaneously, Auer and
Ortner (2006) and Tewari and Bartlett (2007) provide UCRL (a prototype ancestor to UCRL2,
Auer et al. (2009)) and OLP respectively, both achieving O(log(T )) regret on recurrent models,
but both methods are sub-optimal.

Theorem I.16 (Burnetas and Katehakis (1997)). FixZ a state-action space and letMergodic
be the space of all ergodic models with state-action space Z . For M ≡ (Z , r, p) ∈Mergodic
and z ∈ Z , introduce the informational coefficient C(z; M) given by:

inf
�

kl(r(z)||r†(z)) + KL(p(z)||p†(z)) : r†(z) + p†(z)h∗(M)≥ g∗(z; M) + h∗(z; M)
	

.

For every strongly consistent planner (πt) and M ≡ (Z , r, p) ∈ Mergodic with interior
rewards (i.e., 0< r(z)< 1 for all z ∈ Z ), we have:

lim inf
T→∞

E(πt ),M[Reg(T ; M)]
log(T )

≥
∑

z∈Z

∆∗(z; M)
C(z; M)

. (I.15)

Regarding communicating models, there is the remarkable serie of works Agrawal (1990,
1991) that introduces a technique called “forcing” together with an algorithm with regret
O( f (T) log(T)) where f (T) is an hyper-parameter of their method, that can be any function
increasing to infinity. The first works to approach the communicating setting with O(log(T))
regret bounds are the seminal papers of UCRL2 Auer et al. (2009) and REGAL Bartlett and
Tewari (2009), but none of these works provide model dependent lower bounds. The same
holds for KL-UCRL Filippi et al. (2010). In fact, all three algorithms are sub-optimal by failing
to achieve the lower bound that we provide in Part III. We have to wait for Ok et al. (2018) to
find lower bounds again, generalizing Burnetas and Katehakis (1997) to broader settings but
keeping the recurrence assumption. Finally, Tranos and Proutiere (2021) escapes the world of
recurrent models by providing lower bounds for deterministic transition models,4 and algorithms
that are asymptotically optimal for a few of those models. Meanwhile, for model classes with
fixed transitions, Saber et al. (2024) provides IMED-KD with a model dependent analysis and
convincing empirical performance, but no lower bound is provided to the corresponding model
classes.

This leaves us to where we are today.

The current state-of-the-art of model dependent analysis has three diverging branches, con-
sisting in (1) recurrent models, with a lower bound and convincing asymptotically optimal
planners; (2) communicating models, with a few algorithms shown to have regret of order
O(log(T )) with explicit constants, but no guarantees of asymptotic optimality; and (3) deter-
ministic transition models, with a lower bound and partially optimal algorithms.

4We postpone the comparison of the works of Tranos and Proutiere (2021) and our main lower bound to Part III
to keep the discussion streamlined.
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Contributions of the manuscript. In Part III, we merge all three branches by providing the first
model dependent lower bound for communicating models (Theorem I.17). The lower bound is
shown to be tight in Chapter 10, by providing a planner (ECoE) whose asymptotic regret upper
bound matches the lower bound (Theorem III.14). Our main results are summarized below.

Definition I.23. Let M ≡ (Z , r, p) a Markov decision process. The set Inv(M) of pair-wise
invariant measures, or more simply invariant measures, are elements µ ∈ RZ+ such that
∑

a∈A (s)µ(s, a) =
∑

z∈Z µ(z)p(s|z) for all s ∈ S .

Definition I.24. For M ∈ M(Z ) a model space and M ∈ M , the confusing models
Cnf(M ;M ) for M relatively toM is the set of M† ∈M such that (1) M = M† on Z ∗∗(M)
and (2) g∗(M†)> g∗(M). When unambiguous, Cnf(M ;M ) is abbreviated Cnf(M).

Theorem I.17. Fix Z a state-action space and letM ∈M(Z ) any space of communicating
models. For every strongly consistent planner (πt) and M ≡ (Z , r, p) ∈M with interior
rewards (i.e., 0< r(z)< 1 for all z ∈ Z ), we have:

lim inf
T→∞

E(πt ),M[Reg(T ; M)]
log(T )

≥ K(M ;M ) (I.16)

where K(M ;M ) is the solution to the optimization problem:

inf
µ∈Inv(M)

∑

z∈Z
µ(z)∆∗(z) s.t. inf

M†∈Cnf(M)

∑

z∈Z
µ(z)KLz(M ||M†)≥ 1 (I.17)

with KLz(M ||M†) := kl(r(z)||r†(z)) + KL(p(z)||p†(z)).

This lower bound is the subject of Part III in which it is discussed in further details.
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Technical toolbox

In this technical chapter, we provide a non-exhaustive list of general tools that are standard in
the reinforcement learning literature and that we will use throughout the manuscript.

3.1 Changes of measures

Changes of measures will be used to derive lower bounds. The formulation of the inequality we
make use of can first be found in Kaufmann et al. (2016) and was later generalized to Markov
decision processes by the works of Marjani et al. (2021); Marjani and Proutiere (2021). Below,
we write M(z) := r(z)⊗ p(z), so that KL(M(z)||M†(z)) = KL(r(z)||r†(z)) + KL(p(z)||p†(z)). We
write M ≪ M† if the absolute continuity property r(z)⊗ p(z)≪ r†(z)⊗ p†(z) holds for all z ∈ Z .
Recall that kl(−,−) is the Kullback-Leibler divergence between Bernoulli distributions, that is,
kl(p, q) = p log( p

q ) + (1− p) log(1−p
1−q ).

Lemma I.18 (Marjani and Proutiere (2021)). LetM a space of Markov decision processes.
For all models M ≪ M† ∈M , planner (πt) and σ(Ot)-measurable function f : OT → [0, 1],
we have:

∑

z∈Z
E(πt ),M[NT (z)]KL(M(z)||M†(z))≥ kl

�

E(πt ),M[ f (OT )],E
(πt ),M (πt )[ f (OT )]

�

(I.1)

This inequality is used to establish lower bounds both in the model dependent and model
independent settings.

3.2 Standard concentration inequalities

In this section, we list various concentration results that will be used repeatedly in the sequel.
Most of them are classic, or already known. For a few of them, I couldn’t find a proof in a
existing reference hence I provide one.

Lemma I.19 (Azuma’s inequality, Azuma (1967)). Let (Ut)t≥0 a martingale difference sequence
such that sp(Ut) ≤ c a.s., i.e., there exists at ∈ R such that at ≤ Ut ≤ at + c a.s. Then, for all
δ > 0,

P

�

T−1
∑

t=0

Ut ≥ c
Ç

1
2 T log

�

1
δ

�

�

≤ δ.
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Lemma I.20 (Freedman’s inequality, Freedman (1975)). Let (Ut)t≥0 a martingale difference
sequence such that |Ut | ≤ c a.s., and denote its conditional variance Vt := E[U2

t |Ot−1]. Then, for
all δ > 0,

P

�

∃n≥ 1,
n−1
∑

k=0

Uk ≥ a and
n−1
∑

k=0

Vk ≤ b

�

≤ exp

�

−
a2

2(ac + b)

�

.

Lemma I.21 (Freedman’s inequality, Additive version Zhang et al. (2020)). Let (Ut)t≥0 a
martingale difference sequence such that |Ut | ≤ c a.s., and denote its conditional variance Vt :=
E[U2

t |Ot−1]. Then, for all δ > 0,

P



∃T ′ ≤ T :
T ′−1
∑

t=0

Ut ≥

√

√

√

2
T ′−1
∑

t=0

Vt log
�

T
δ

�

+ 4c log
�

T
δ

�



≤ δ.

Lemma I.22 (Time-uniform Azuma, Bourel et al. (2020)). Let (Ut) a martingale difference
sequence such that, for all λ ∈ R, E[exp(λUt)|U1, . . . , Ut−1]≤ exp(λ

2σ2

2 ). Then:

∀δ > 0, P

 

∃n≥ 1,

�

n
∑

k=1

Uk

�2

≥ nσ2
�

1+ 1
n

�

log
�p

1+n
δ

�

!

≤ δ.

Lemma I.23 (Time-uniform Weissman). Let q a distribution over {1, . . . , d}. Let (Ut) a sequence
of i.i.d. random variables of distribution q. Then:

∀δ > 0, P

 

∃n≥ 1,











n
∑

i=1

�

eUi
− q
�











2

1

≥ nd log
�

2
p

1+n
δ

�

!

≤ δ.

Proof. Remark that




∑n
k=1(eUk

− q)




1
= maxv∈{−1,1}d

∑n
k=1




eUk
− q, v

�

. Let W v
k :=




eUk
− q, v

�

.

Remark that for each v ∈ {−1,1}d , (W v
k ) is a family of i.i.d. random variables with −〈q, v〉 ≤

W v
k ≤ 1− 〈q, v〉, so E[exp(λW v

k )]≤ exp(λ
2

8 ) by Hoeffding’s Lemma. By Lemma I.22, we have:

P

 

∃n≥ 1,











n
∑

k=1

(eUk
− q)











1

≥
r

nd log
�

2
p

1+n
δ

�

!

= P

�

∃v ∈ {−1, 1}d ,∃n,
n
∑

k=1

W v
k ≥

r

nd log
�

2
p

1+n
δ

�

�

≤
∑

v∈{−1,1}d
P

�

∃n,
n
∑

k=1

W v
k ≥

r

nd log
�

2
p

1+n
δ

�

�

≤
∑

v∈{−1,1}d
P

�

∃n,
n
∑

k=1

W v
k ≥

r

1
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1+ 1
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�

�

≤ 2d · 2dδ = δ.

This concludes the proof.

Lemma I.24 (Time-uniform Empirical Bernstein). Let (Uk)k≥1 a martingale difference sequence
such that sp(Un) ≤ c a.s., let Ûn := 1

n

∑n
k=1 Uk the empirical mean and V̂n := 1

n

∑n
k=1(Uk − Ûn)2

the population variance. Then,

∀δ > 0,∀T > 0, P

�

∃t ≤ T,
t
∑

i=1

Ui ≥
Ç

2t V̂t log
�

3T
δ

�

+ 3c log
�

3T
δ

�

�

≤ δ.

Proof. This is obtained with a union bound on the values of n≤ T , then applying Lemma I.26.
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Lemma I.25 (Time-uniform Empirical Likelihoods, Jonsson et al. (2020)). Let q a distribution
on {1, . . . , d}. Let (Ut) a sequence of i.i.d. random variables of distribution q. Then:

∀δ > 0, P
�

∃n≥ 1, nKL(q̂n||q)> log
�

1
δ

�

+ (d − 1) log
�

e
�

1+ n
d−1

���

≤ δ.

Lemma I.26 (Empirical Bernstein inequality, Audibert et al. (2009)). Let (Uk)k≥1 a martingale
difference sequence such that sp(Un)≤ c a.s., let Ûn := 1

n

∑n
k=1 Uk the empirical mean and V̂n :=

1
n

∑n
k=1(Uk − Ûn)2 the population variance. Then,

∀δ > 0,∀n≥ 1, P

�

n
∑

k=1

Uk ≥
Ç

2nV̂n log
�

3
δ

�

+ 3c log
�

3
δ

�

�

≤ δ.

Lemma I.27 (Bennett’s inequality, Audibert et al. (2009)). Let (Ut)t≥0 a martingale difference
sequence such that |Ut | ≤ c a.s., and denote its conditional variance Vt := E[U2

t |Ot−1]. Then,

∀δ > 0,∀n≥ 1, P
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δ
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Lemma I.28 (Lemma 3 of Zhang and Xie (2023)). Let (Ut) be a sequence of random variables
such that 0≤ Ut ≤ c a.s., and let Ot := σ(U0, U1, . . . , Ut−1). Then:

∀δ > 0, P

�

∃T ≥ 0,
T−1
∑

t=0

Ut ≥ 3
T−1
∑

t=0

E[Ut |Ot−1] + c log
�

1
δ

�

�

≤ δ;

∀δ > 0, P

�

∃T ≥ 0,
T−1
∑

t=0

E[Ut |Ot−1]≥ 3
T−1
∑

t=0

Ut + c log
�

1
δ

�

�

≤ δ.

Lemma I.29 (Tails of Geometric Random Variables). Let (X i) a sequence of i.i.d. random variable
of distribution G(p), and let Sn := X1 + . . .+ Xn their sum. Then, for all c ≥ 2 and t ≥ 0,

P(Sn ≥ c(E[Sn] + t))≤ (1− p)t exp
�

− (2c−3)n
4

�

.

Proof. This proof is standard and was found on math.stackexchange.com1. We rely on
Chernoff’s method as usual by using the Laplace transform E[esX i]. We have:

P(Sn ≥ c(E[Sn] + t))≤ e−sc t e−scn/p
n
∏

i=1

E[esX i].

We compute the Laplace transform of X i: E[esX i] = (1− 1−es

p )
−1. Setting s = −1

c log(1− p), we
have exp(−sc) = 1− p. In the above formula, we readily obtain:

P(Sn ≥ c(E[Sn] + t))≤ (1− p)t exp
�

n
�

a
p − log

�

1− b
p

���

where a := log(1− p) and b = 1− (1− p)1/c. We want that exponential to decrease quickly
to 0 with n, i.e., we want a/p − log(1 − b/p) < 0. By Bernoulli’s inequality, we have b =
1− (1− p)1/c ≤ p/c ≤ p/2, hence b/p ≤ 1

2 . Moreover, for z ∈ (0, 1
2], log(1− z)≥ −z− z2, hence

a
p − log

�

1− b
p

�

≤ a
p

b
p − log(1

2)≤
1
2

�

a
b +

3
2

�

.

Finally, since a = log(1 − p) and b ≤ p/c, it follows that a
b ≤

c log(1−p)
p ≤ −c, so we get

a
b − log(1− b

p )≤
1
2(−c + 3

2). This concludes the proof.

1 https://math.stackexchange.com/questions/110691/tail-bound-on-the-sum-of-independent-non-identical-geometric-random-variables

https://math.stackexchange.com/questions/110691/tail-bound-on-the-sum-of-independent-non-identical-geometric-random-variables


Part II

Minimax Optimal Regret in Average
Reward MDPs

This part is dedicated to the minimax setting (see Section 2.3). We start by discussing the
minimax lower bound of the regret in Chapter 4, and show that it scales with the span of the
bias function rather than the diameter, addressing an open question of Fruit et al. (2018). The
remaining chapters explain how this lower bound can be achieved with a tractable algorithm.
Chapter 5 studies by how much the gain of a policy or of a Markov decision process is subject
to change under modification of the reward function and transition kernel. It is a high level
discussion on the technique that such an algorithm should rely on and can be considered as
a friendly introduction to the heavier regret analysis of PMEVI in Chapter 7. Chapter 6 is an
introduction to the famous design principle known as optimism-in-face-of-the-uncertainty, suited
to the design of robust algorithms. We pinpoint a few holes in existing works and explain the
challenges faced by optimistic algorithms regarding regret, motivating the main components of
PMEVI, the solution provided in Chapter 7.

The main target of this part is to explain the algorithm PMEVI in Chapter 7 from my paper
Boone and Zhang (2024), written in collaboration with Zihan Zhang, which is a general solution
to the minimax regret problem. Its core component is an improved version of the Extended Value
Iteration (EVI, Auer et al. (2009)) subroutine that we call Projected Mitigated EVI, that can
replace EVI in every existing algorithms in the literature that relies on it, and make it minimax
optimal.

This part is an extended version of a paper written in collaboration with Zihan Zhang.

Boone, V. and Zhang, Z. (2024). Achieving Tractable Minimax Optimal Regret in
Average Reward MDPs. _eprint: 2406.01234

Chapter 7 is directly adapted from my paper Boone and Zhang (2024). Chapters 4 to 6
are an extended introduction to the ideas and the literature behind the algorithm presented in
Chapter 7. Chapter 4 is independent of the three other chapters. Chapter 5 presents a technique
and may be skipped. However, reading Chapter 6 is important to understand Chapter 7 fully.
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Chapter 4

Minimax lower bounds

The story begins with the number of samples required to determine the value of a function
correctly. Say that the system is characterized by an unknown parameter θ ∈ Θ ⊆ Rd that can
only be observed up to noise by collecting independent samples X1, X2, . . . drawn from a fixed
distribution ν ∈ P (R) of first moment θ . In addition to that unknown parameter, we are given
a family of functions fℓ : Θ→ R indexed by labels ℓ living in a label space L . The very value of
θ is actually of little interest, because the true objective is to find an optimal label ℓ∗ achieving:

fℓ∗(θ ) =max
ℓ∈L

fℓ(θ ). (II.1)

Let us just assume that such a label exists and is unique. If ν has a second-order moment, a
natural approach is to estimate θ by 1

n(X1+ . . .+Xn) and maximize fℓ(
1
n(X1+ . . .+Xn)) for ℓ ∈ L .

If, by any chance, the functions fℓ are L-Lipschitz, then by the Central Limit Theorem, the proxy
fℓ(

1
n(X1+ . . .+Xn)) approximates fℓ(θ ) with an error of order σL/

p
n where σ2 := E[(X i−θ )2]

is the variance on sampled values. A remarkable consequence of this qualitative result is that
if one label ℓ achieves fℓ∗(θ)≤ fℓ(θ) + 1/

p
n, there are high chances for ℓ to be mistaken for

the optimal label if we have collected less that σ2 L2 samples of ν. So, the required amount of
samples increases with L (the sharpness of deviations) and σ2 (the noise on observations).

This construction is reminiscent of minimax lower bounds. Minimax lower bounds are
achieved at instances where the function to maximize is subject to sharp deviations and where
there are suboptimal labels with near-optimal values, i.e., suboptimality and optimality are hard
to distinguish. Regarding Markov decision processes, θ will be the true model M ≡ (Z , p, r),
the labels are deterministic policies Π, and the function to maximize is the gain gπ. Then, a
small difficult problem can serve as a basic brick to construct artificially harder problems, simply
by merging several independent copies of the same basic bricks into a single one. Solving the
larger problem can only be solved by solving the inner sub-problems in parallel. Typically, such
problems are constructed by putting K copies of the same problem next to each other, where
in each, the optimal label is difficult to distinguish from the sub-optimal ones, but one of the
K copies holds an optimal label that is slightly better than all of its copies’. Henceforth, this
copying construction results in an instance with many symmetries, in which finding the optimal
label is like looking for a needle in a haystack.

The three emphasized terms are the three ingredients to make a minimax lower bound: find
a model with many symmetries, where sub-optimal policies are actually close to being optimal,
and where the gain is very sensible to kernel and reward perturbations.
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4.1 The variations of the gain function

The main difficulty of minimax lower bounds for Markov decision processes is to estimate how
the gain of a policy is subject to vary. This is usually done in an ad hoc way, i.e., a very specific
model is described and an explicit formula for the deviations of the gain is derived for this model
specifically. In this manuscript, we provide a general result to more generically design lower
bounds. Theorem II.1 below shows that the gain varies according to sp(hπ).

Theorem II.1. Let M ≡ (Z , p, r) and M̂ ≡ (Z , p̂, r̂) two Markov decision processes and fix
π ∈ ΠSR a randomized policy. If sp(gπ(M)) = 0, then

∥gπ(M̂)− gπ(M)∥∞ ≤ ∥r̂π − rπ∥∞ +
1
2sp(hπ(M))∥p̂π − pπ∥1. (II.2)

Proof. Let T ≥ 1 and s ∈ S an initial state. For short, let επr := ∥r̂π−rπ∥∞ and επp := ∥p̂π−pπ∥1.

(∗) := Eπ,M̂
s

�

T−1
∑

t=0

Rt

�

= Eπ,M̂
s

�

T−1
∑

t=0

r̂π(St)

�

≤ Eπ,M̂
s

�

T−1
∑

t=0

rπ(St)

�

+ Tεπr

(†)
= Eπ,M̂

s

�

T−1
∑

t=0

�

gπ(St) +
�

eSt
− p(St , At)

�

hπ
�

�

+ Tεπr

(‡)
≤ T gπ(s) + Eπ,M̂

s

�

T−1
∑

t=0

��

eSt+1
− p̂(St , At)

�

hπ + (p̂(St , At)− p(St , At))h
π
�

�

+ sp(hπ) + Tεπr

(§)
= T

�

gπ(s) + επr +
1
2sp(hπ)επp

�

+ sp(hπ)

where (†) invokes the Poisson equation gπ(St) + hπ(St) = rπ(St) + pπ(St)hπ, (‡) uses that
gπ(St) = gπ(s) for all t ≥ 0 and (§) that, if p, p′ ∈ P (S ) and u ∈ RS then |(p′ − p)u| ≤
1
2sp(u)∥p′ − p∥1. Dividing by T and letting it go to infinity, we obtain the desired upper-bound.
The lower bound is obtained similarly.

The bound of (II.2) is tight in general, for instance when pπ is of full support, i.e., when
pπ(s′|s)> 0 for all s, s′ ∈ S . For simplicity, assume that π is deterministic, let smin and smax two
states respectively minimizing and maximizing hπ(s). Let α ∈ {−1,+1}. Given εr ,εp > 0, set

r̂π(s) := rπ(s) +αεr and p̂π(−|s) := pπ(−|s) +α1
2εp

�

esmax
− esmin

�

. (II.3)

Because pπ is of full support, p̂ is indeed a probability distribution provided that εp is small
enough. By following the computations of the proof Theorem II.1, we see that every inequality
becomes an equality, leading to ĝπ(s) = gπ(s) +α(εr +

1
2sp(hπ)εp).

Therefore, for all reward function r and all kernel p (up to uniform infinitesimal perturbation
to make if fully supported), the bound of (II.2) is the best possible bound for the ℓ1-norm. It can
(and it will) be improved by using other distances or divergences. To design a tight minimax
lower bound however, the bound of (II.2) will be enough.
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4.2 Diameter, mixing time or bias span?

The historical minimax lower bound of Auer et al. (2009),
p

DSAT , depends on the diameter,
while our gain deviation result (Theorem II.1) indicates that the gain varies with the span of
the bias function, hence suggesting that the dependency may be off. It is known, since (Bartlett
and Tewari, 2009, Theorem 4) at least, that a dependency in sp(h∗) is more accurate than a
dependency in D because sp(h∗)≤ D, see Proposition II.2 below. Moreover, by looking at how
Auer et al. (2009) prove their lower bound, Fruit et al. (2018) makes the observation that the
“hard instance” that they provide satisfies sp(h∗) = D, still leaving the possibility to replace D by
sp(h∗). After all, a few algorithms have regret bounds depending on sp(h∗) rather than D; but
either these have a priori information on sp(h∗) or their regret depends on extra parameters,
or have sub-optimal dependency in sp(h∗). Also, the diameter and the bias span are not the
only contenders at minimax regret lower bounds and many works provide bounds based on the
mixing time.

So, should it be the diameter, the bias span or the mixing time?
In Proposition II.2, we show that the bias function is the best possible reference we can hope

for, because it is always smaller than the diameter and the mixing time.
We recall the definition of the mixing time below.

Definition II.1 (Levin and Peres (2017)). The mixing time tmix of an ergodic Markov chain with
kernel P and invariant measure µ is

tmix(α) := inf
�

t ≥ 0 : ∀s ∈ S ,∥es · P t −µ∥1 ≤
1
2α
	

(II.4)

for α= 1
4 . The mixing time of a Markov decision process is the largest mixing time tmix(π) over all

deterministic policies π ∈ Π.

Remark that it is finite only when all policies are aperiodic. The following result is a
combination of different sources Bartlett and Tewari (2009); Wang et al. (2022).

Proposition II.2 (Bartlett and Tewari (2009); Wang et al. (2022)). The span of the optimal
bias function is upper-bounded by the diameter and the mixing time. More specifically:

(1) If M ≡ (Z , p, r) is communicating, then sp(h∗(M))≤ sp(r)D(M);
(2) If M ≡ (Z , p, r) is ergodic, then sp(h∗(M))≤ 2∥h∗(M)∥∞ ≤

2sp(r)
1−α tmix(α;π∗) for all

bias optimal policy π∗.

Proof. The proof of (1) below is simplified from the original source Bartlett and Tewari (2009).
Fix two states s1, s2 ∈ S and let π such that Eπs1

[τs2
]<∞. We have:

0≤ Eπs1





τs2
−1

∑

t=0

∆∗(Zt)





(†)
= Eπs1





τs2
−1

∑

t=0

�

g∗(St)− r(Zt) +
�

eSt
− p(Zt)

�

h∗
�





(‡)
≤ sp(r)Eπs1

[τs2
] + h∗(s1)− h∗(s2)

where (†) follows from the Bellman equation and (‡) from sp(g∗ − r) = sp(r). Accordingly,
h∗(s2)− h∗(s1)≤ sp(r)Eπs1

[τs2
]. Conclude by picking the optimal policy to travel from s1 to s2.

For (2), refer to Wang et al. (2022).

Wang et al. (2022) also points out that the bias span is strictly smaller than the diameter
and the mixing time in general, by remaining bounded while the other two explode to infinity,
see Figure 4.1.
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Figure 4.1: Markov reward processes with various relationships between sp(h∗), D and tmix.

Following Proposition II.2, a bound depending on the bias span is far superior to a bound
depending on the diameter or the mixing time. But then, isn’t the

p
DSAT lower bound of

Auer et al. (2009) already showing that the lower bound is
p

sp(h∗)SAT? Yes, it does. Yet, this
answer is missing a big part of the story that can be summarized with the questions below.

Is the minimax lower bound
p

sp(h∗)SAT because it is
p

DSAT for some instance
where it happens that the diameter and the bias span are of the same order? Or, is the
minimax lower bound

p

sp(h∗)SAT independently of the diameter? Is the diameter of
a Markov decision process really what makes it hard to learn?

This nuance is of utmost importance because the purpose of a lower bound is to describe what
makes a problem difficult. Claiming that the lower bound depends on the diameter, hence that
the lower bound depends on the bias, would mean what makes the learning problem difficult is
the diameter, which is by the way lower bounded by the bias span. What we show downstream
is the opposite. What truly makes the learning task difficult is the bias, and by the way, a few
models happen to have the diameter of the same order than the bias span, hence the regret
bounds for those depends on the diameter as well. A tangible example of such a model is the
hard instance provided in Auer et al. (2009).

It is worth pointing out that in the parallel world of probably approximately correct re-
inforcement learning (PAC settings), where the goal is to collect observations to output an
approximately optimal policy as fast as possible, the understanding of the dependency of the
lower bounds with respect to the bias function has seen recent enlightening advances. In PAC
learning, an algorithm is said (ε,δ)-PAC if it outputs an ε-gain optimal policy with probability
at least 1−δ, and its sample complexity is the expected number of samples that the algorithm
requires. It is known since Wang et al. (2022) that the minimax lower bound on the complexity is
D|Z |ε−2 log( 1

δ ), and this sample complexity is achieved by Tuynman et al. (2024). An algorithm
with sample complexity tmix|Z |ε−2 log( 1

δ ) is given by Wang et al. (2024). Wang et al. (2024) also
provides the lower bound sp(h∗)|Z |ε−2 log( 1

δ ) on the sample complexity and this lower bound
is achieved by Zurek and Chen (2024) but there is a twist: sp(h∗) must be fed as input to the
algorithm. Interestingly, Tuynman et al. (2024) shows that the lower bound sp(h∗)|Z |ε−2 log( 1

δ )
cannot be achieved unless sp(h∗) is known by the planner.

Even more interestingly, in opposition to PAC learning, no knowledge on the span of the
bias function is required to achieve minimax optimal regret.

These parallel works show that the optimal bias function and the diameter are objects of a
different nature and that the simple relation sp(h∗)≤ sp(r)D is, if useful, actually misleading.
The bias function is more than a refinement of the diameter: It is a quantity that cannot be
estimated under noise (see Tuynman et al. (2024)). And yet, the true achievable minimax
lower bound depends on the bias function rather than the diameter.
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4.3 The bias span minimax lower bound

The most precise, “non-asymptotic”, minimax lower bound that provided in this manuscript is
the following.

Theorem II.3. Let S ∈ 3N, A≥ 3 and let Z be the induced tabular structure. Let 2≤ c ≤ d
and let T ≥ 400S(A−1)

9c (2d + c + 1
3S − 1)2 + 4

9 cS(A− 1). For all every planner (πt) ∈ ΠHR(Z ),
there exists a model M† ∈M (Z ) with sp(h∗(M†))≤ c and D(M†)≥ d such that:

E(πt ),M†
[Reg(T )]≥ 1

144

Æ

3cS(A− 1)T − c. (II.5)

In particular, ifM (c, d) denotes the set of models such that sp(h∗)≤ c and D ≤ d, we have
K(M (c,∞) \M (c, d)) = Ω(

p
c) for all d > 0.

This makes the minimax regret Ω(
p

cSAT ) independently of the diameter. If we refines the
notationM (c, d) a little bit, Theorem II.3 shows that the minimax complexity (Definition I.20)
ofM ([0, c], [d,+∞]), the space of tabular models with bias span sp(h∗) ∈ [0, c] and diameter
D ∈ [d,+∞] is

K(M ([0, c], [d,+∞])) = Ω(
p

cSA) (II.6)

In comparison, Auer et al. (2009) shows that K(M ([0, d], [0, d])) = Ω(
p

dSA). Our bound
(II.6) strictly generalizes their becauseM ([0, d], [0, d]) ⊆M ([0, d], [0,+∞]) and establishes
the claims upstream: The minimax complexity scales with the bias regardless of the diameter.

This whole section is dedicated to a proof of Theorem II.3.

4.3.1 Construction of a hard instance

The critical model M† of Theorem II.3 is found near a “hard instance” M . This “hard instance”
is obtained as a model where all pairs are weakly optimal, so that the first order regret is null
whatever the planner does. This model is full of symmetries and is designed so that the gain
deviation bound (II.2) is tight. We consider an adequate state-action pair z that the learner
visits more rarely than others in expectation, then consider a small modification of M denoted
M z
ε where z is slightly improved. Because M and M z

ε are hard to distinguish, the planner will
behave similarly on both model with significant probability, hence has significant chances to
miss the optimal nature of z in M z

ε , hence have high regret in M z
ε . The proof consists in making

all this precise.
We begin by describing the hard instance.
This hard instance is obtained by merging several “core” hard instances together. The core is

a three state Markov reward process described in Figure 4.2 which diameter and bias span are
of the right order of magnitude.

The perturbed core model introduced by Figure 4.3 is such that gε ∼
1
2 +

1
2εc = 1

2 + sp(h)ε
when ε→ 0, making the deviation gain bound of Theorem II.1 tight as motivated. To construct
the hard instance, the actions of the core instance of Figure 4.2 are first duplicated to form the
cluster instance, by multiplying the action (∗) A−1 times from every state, resulting in a Markov
decision process M ′ with 3 states and A−1 actions per state. From the cluster instance, the hard
instance is obtained by duplicating the cluster into 1

3S individual copies M ′(0), . . . , M ′(S/3−1),
later arranged in a torus using the reserved action (†), as depicted in Figure 4.3. Formally, we
write s(i) the state s ∈ {0,1,2} of the cluster M ′(i). This last action (†) is a copy of (∗) that,
instead of leaving the cluster M ′(i) stable, goes to the next cluster M ′(i+1). Visually,

p(−|s(i), †) := p(−|s(i+1),∗). (II.7)
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Figure 4.2: (To the left) The core of the hard instance parameterized by 0 < c ≤ d. It
is a three state Markov reward process with diameter 2d + c and bias span 1

2 c. Its gain is
g = (1

2 , 1
2 , 1

2), bias h = (−1
2 c, 0, 0) + λe and invariant measure is µ = (1

3 , 1
3 , 1

3). (To the right)
The ε-perturbed core of the hard instance. Its gain is gε = (

3
2

1+εc
3+2εc , 3

2
1+εc

3+2εc , 3
2

1+εc
3+2εc ) and bias

hε = (−
3c

6+4εc , 0,− εcd
6+4εc ) +λe.

On Figure 4.3, we see that playing (†) from state 1 in cluster i behaves similarly to playing (∗)
from state 1 in cluster i + 1. The resulting model has bias and diameter of the desired orders.
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Figure 4.3: The hard instance is obtained by arranging multiple cluster instances (Figure 4.2)
in a torus. Its per-state optimal gain is g = 1

2 . Whatever the cluster i, the optimal bias vector is
hi = (−

1
2 c, 0, 0) +λe, where λ doesn’t depend on i.

4.3.2 A few properties of the hard instance

The constructed hard instance has bias span and diameter of the required orders.

Lemma II.4. Consider the hard instance M as given by Figure 4.3 with parameters c, d > 0. Then:

(1) Every policy is bias optimal on M;
(2) sp(h∗(M)) = 1

2 c;
(3) 2d + c ≤ D(M)≤ 2d + c + 1

3S − 1.

These assertions follow immediately from the construction of M and the numerical properties
of the core instance as described in Figure 4.2. The minimax lower bound is established by
looking at the regret of planners on small perturbations of the hard instance M . Given a
perturbation ε > 0 and a pair z ≡ (0(i), a) ∈ Z with a ̸= (†), the (ε, z)-perturbed model is
the modification M z

ε of M obtained by changing p(0(i), a) to the ε-perturbed version of the
core instance as described by Figure 4.2, i.e., pz

ε(−|0
(i), a) := p(−|0(i), a) + ε(e1(i) − e0(i)). The

perturbed model has the following properties.
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Lemma II.5. Given a perturbation ε > 0 and a pair z ≡ (0(i), a) ∈ Z with a ̸= (†), the (ε, z)-
perturbed hard model satisfies:

(1) sp(h∗(M z
ε))≤ sp(h∗(M))≤ 10(2d + c + 1

3S − 1)c · ε provided that ε < (2d + c + 1
3S − 1)−1;

(2) D(M z
ε)≥ d.

Proof. Fix π a bias optimal policy of M z
ε . We see that π can be chosen unichain, playing z from

0(i), playing any (∗) action from 1(i), 2(i) and (†) from every other. In M , this policy is bias
optimal, with bias h∗(M). Invoking Lemma III.43, we have:

∥h∗(M z
ε)− h∗(M)∥∞ ≤

�

2Dπ(M z
ε)sp(h

π(M)) + 1
2sp(hπ1 (M))

�

∥pz
ε − p∥1 (II.8)

where Dπ is the policy diameter of π (see Definition III.8) and hπ1 is the first order bias (see
Definition I.10). By definition, ∥pz

ε− p∥1 = 2ε. Using Lemma III.43, we have Dπ(M z
ε)≤ 2Dπ(M)

provided that 2ε < 1
Dπ(M) . Using Lemma III.38, we have sp(hπ1 (M)) ≤ 2sp(hπ(M))Dπ(M).

Moreover, expanding the definition of Dπ(M), we find Dπ(M)≤ 2d + c + 1
3S − 1. All together,

we get
∥h∗(M z

ε)− h∗(M)∥∞ ≤ 5(2d + c + 1
3S − 1)c · ε (II.9)

provided that ε < (2d + c + 1
3S − 1)−1. This proves (1). Assertion (2) is immediate.

In particular, the diameter of M z
ε is of the right order and its bias span is h∗(M) +O(ε) =

1
2 c +O(ε) when ε→ 0, hence is of the desired order as well. For ε < 1

4 · (10(2d + c 1
3S − 1))−1,

we obtain sp(h∗(M z
ε))≤

3
4 c.

4.3.3 Proving the minimax lower bound: Proof of Theorem II.3

Consider an arbitrary planner (πt) and consider the model M described in Figure 4.3. By
construction, M is a concatenation of 1

3S cluster instances M ′(0), . . . , M ′(S/3−1) and the states of
M can be split into three categories S0,S1,S2 with

Si :=
�

i( j) : j ∈ {0,1, . . . , 1
3S}

	

. (II.10)

That is, S0 is the collection of states 0 of the clusters, etc. Given S ′ ⊆ S , we denote NT (S ′) :=
∑

s∈S ′ NT (s).
The idea of the proof is to improve a pair that the planner visits poorly. By symmetry, there

must be a cluster i and an action a ∈A \{†} such that E(πt ),M[NT (0(i), a)] = O( 1
SA), see (STEP 1)

with (II.11). This poorly visited pair is denoted z and we consider all (ε, z)-perturbed models for
some ε > 0 to be tuned later on, where z is made better than every over pair in the model. So,
in M z

ε , a good planner must play z as often as possible. Indeed, with (STEP 2) and (II.13), the
regret of the planner is shown to be directly linked to the number of times z is pulled. However,
if ε is small enough then M z

ε and M are pretty much indistinguishable, and the planner will
behave very similarly under M and M z

ε . This is formalized with a change of measure argument
in (STEP 3) with (II.15), relating E(πt ),M z

ε [NT (z)] to E(πt ),M[NT (z)]. By choice of z, we argue
that for ε= Θ(

p

SA/(cT )), we have E(πt ),M[NT (z)]≤
2
9 T that, combined with the regret lower

bound of (STEP 2), is enough to conclude that E(πt ),M z
ε [Reg(T )] = Ω(

p
cSAT ) for this choice of

ε, see (II.18).

(STEP 1) We have E(πt ),M[NT (S0)] =
1
3 T +O(1) and there exists s ∈ S0 as well as a ∈A (s) \ {†}

such that:

E(πt ),M[NT (s, a)]≤
T

S(A− 1)
+

3D(M)
S(A− 1)

. (II.11)
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Proof. By construction, the invariant measure of every policy satisfies µ(S0) = µ(S1) = µ(S2).
Consider the reward function f (s, a) := 1(s ∈ S0) tracking the visits of S0. Let g f , h f ,∆ f the
optimal gain, bias and gap functions of the Markov decision process obtained by changing the
reward function to f ; The associated optimal policy π f is maximizing its number of visit counts
on S0. We see that g f = 1

3 e and ∆ f ≥ 0.1 Let C := sp(h f ), that satisfies C ≤ D(M) from
Proposition II.2. We have:

E(πt ),M[NT (S0)] = E(πt ),M

�

T−1
∑

t=0

f (Zt)

�

= E(πt ),M

�

T−1
∑

t=0

�

g f (St) +
�

eSt
− p(Zt)

�

h f −∆ f (Zt)
�

�

≤ 1
3 T + C − E

�

T−1
∑

t=0

∆ f (Zt)

�

≤ 1
3 T + C . (II.12)

Similarly, by considering the Markov decision process obtained by changing the reward function
to − f and mimicking the above rationale, we show that E(πt ),M[NT (S0)] ≥

1
3 T − C ′ for some

C ′ <∞, that we can assume smaller than C up to increasing C . This proves the first half of the
claim. For the second half, we continue from (II.12). Because |S0| =

1
3S and E(πt ),M[NT (S0)] =

∑

s∈S0
E(πt ),M[NT (s)], we deduce that the state s ∈ S0 which is the least visited in expectation is

such that E(πt ),M[NT (s)]≤
T
S +

3C
S . From this state s = 0(i), there are A− 1 copies of of action (∗)

and since E(πt ),M[NT (s)] =
∑

a∈A (s) E
(πt ),M[NT (s, a)], the least played (∗) action from s satisfies

the claim.

(STEP 2) Denote z the pair (s, a) introduced by (STEP 1), see (II.11). Modify M to M z
ε by

changing p(0(i), a) to the ε-perturbed version as represented in Figure 4.2, i.e., p†
ε(−|0

(i), a) :=
p(−|0(i), a) + ε(e1(i) − e0(i)). We have:

E(πt ),M z
ε [Reg(T )]≥

εc
4εc + 3

�

T − (3+ 2εc)E(πt ),M z
ε [NT (z)]

�

− c. (II.13)

Proof. This modification introduced in M z
ε improves the pair z ≡ (0(i), a), making action a strictly

better than any other from 0(i). We see that g∗(M z
ε) =

3
2

1+εc
3+2εc . Let π† the policy picking the

action † from every state. Since M and M z
ε are identical on Z \ {z}, we find gπ

†
(M z

ε) = gπ
†
(M)

and hπ
†
(M z

ε) = hπ
†
(M). Moreover, we know that π† has null gaps on M , hence it has null gaps

on M z
ε excepted at z, where a straight forward computation shows that

∆π
†
(z; M z

ε) = −
1
2εc. (II.14)

Following this, we find

(−) := E(πt ),M z
ε [Reg(T )]

:= E(πt ),M z
ε

�

T g∗(M z
ε)−

T−1
∑

t=0

Rt

�

= E(πt ),M z
ε

�

T g∗(M z
ε)−

T−1
∑

t=0

�

gπ
†
(St , M) +

�

eSt
− pz

ε(Zt)
�

hπ
†
(M)−∆π

†
(Zt ; M z

ε)
�

�

(§)
≥

T · εc
4εc + 6

− E(πt ),M z
ε [NT (z)] ·

1
2εc − sp(hπ

†
(M))

1Actually, we can show that ∆ f = 0 by using the many symmetries of M .
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where (§) unfolds the definition of both gain values and invokes (II.14) . Rearrange terms and
conclude using that sp(hπ

†
(M)) = sp(h∗(M)) = 1

2 c ≤ c.

(STEP 3) For all ε > 0 and T ≥ 0, we have:

EM z
ε [NT (z)]≤ EM[NT (z)] + 2T · EM[NT (z)]kl

�

1
c , 1

c + ε
�

+ EM[NT (z)]
Ç

2Tkl
�

1
c , 1

c + ε
�

(II.15)

where we have removed the dependency on the planner (πt) to lighten up notations.

Proof. By Lemma I.18, we have:

kl
�

1
T EM z

ε [NT (z)],
1
T EM[NT (z)]

�

≤
∑

(s,a)∈Z

EM[NT (s, a)] KL(M(s, a)||M z
ε(s, a))

= EM[NT (z)] KL(p(z)||pz
ε(z))

= EM[NT (z)] kl
�

1
c , 1

c + ε
�

.

Using the numerical inequality kl(p, p + ε) ≥ ε2

2(p+ε) that holds for p ≥ 0 and ε ≥ 0, from the

above follows that if EM z
ε [NT (z)]≥ EM[NT (z)], then

�

1
T EM z

ε [NT (z)]−
1
T EM[NT (z)]

�2 ≤ 2
T EM z

ε [NT (z)] · EM[NT (z)]kl
�

1
c , 1

c + ε
�

.

This is an equation of the form (x −α)2 ≤ β x , that solves as x ≤ α+ β +
p

αβ .

We have everything we need in order to conclude. In view of (II.13), the regret on M z
ε is

large if T − (3+ 2εc)E(πt ),M z
ε [NT (z)] is large. Given λ > 0, we look for a sufficient condition on

ε (possibly asymptotic with respect to T) such that E(πt ),M z
ε [NT (z)]≤ (1−λ)T . Invoking (II.15),

a sufficient condition is:

(3+ 2εc)
�

EM[NT (z)] + 2T · EM[NT (z)]kl
�

1
c , 1

c + ε
�

+ EM[NT (z)]
Ç

2Tkl
�

1
c , 1

c + ε
�

�

< (1−λ)T.

The informational terms kl(1
c , 1

c + ε) are simplified to polynomial terms by using that ∀ε <
1
3 , kl(1

c , 1
c +ε)≤ 3cε2.2 Invoking (II.11) to further upper bound EM[NT (z)]≤

T
S(A−1) +

3D
S(A−1) and

changing 3+ 2εc to 4 (holding for ε < 1
2 c, we obtain the sufficient condition

24T (T + 3D)c · ε2 + 4
p

6(T + 3D)
p

Tc · ε < S(A− 1)(1−λ)T (II.16)

which is quadratic in ε ∈ (0, 1
3 ∧

1
2 c). With a bit of algebra that is not very interesting, and using

S(A− 1)≥ 6, for T ≥ 3D, it is natural to choose λ = 1
3 , and the condition (II.16) is simplified to

the sufficient condition:

ε <
1
6

√

√S(A− 1)
cT

. (II.17)

Following (II.17), we set ε := 1
6

Ç

S(A−1)
cT , and we have T − (3 + 2εc)E(πt ),M z

ε [NT (z)] ≥
1
3 T .

Injecting in (II.13), we obtain:

E(πt ),M z
ε [Reg(T )]≥

εc
4εc + 3

1
3

T − c
(§)
≥

1
72

Æ

cS(A− 1)T − c (II.18)

where (§) holds for T > 4
9 cS(A− 1). We finally change the dependency on c by a dependency

on sp(h∗(M z
ε)). By Lemma II.5, if ε ≤ 1

4 · (10(2d + c + 1
3S − 1))−1, then sp(h∗)(M z

ε) ≤
3
4 c. This

condition on ε corresponds to T ≥ 400S(A−1)
9c (2d + c + 1

3S − 1)2, concluding the proof. ■
2It is shown using the integral formula kl(p, p+ ε) =

∫ ε

0
x2

(p+x)(1−p−x)d x .



Chapter 5

Interlude: A story about the
deviations of the gain

Is the minimax complexity truly
p

sp(h∗)SAT? This manuscript is unfortunately short of an
answer. What will be shown nonetheless, is that a regret of order

p

sp(h∗)SAT log(T ) can be
achieved. Whether the logarithmic factor is mild or not remains an open question that has
actually never been approached to begin with in the literature on Markov decision processes.

In this chapter, we display a technique and explain why this technique is mandatory.
This technique is usually referred to as the “variance reduction method” in the literature

Azar et al. (2017); Kakade et al. (2020); Lattimore and Hutter (2012); Munos and Moore (1999),
first introduced in the discounted reward setting where the objective function is E[

∑∞
t=0 γ

tRt]
instead. It has become an inevitable tools since in broader settings, including our own. Its
adaptation to undiscounted infinite reinforcement learning goes back to Fruit et al. (2020);
Maillard et al. (2014); Talebi and Maillard (2018) and the manuscript of Fruit (2019) provides
interesting insight on the technique. The nearly minimax optimal planner that we describe in
Chapter 7, PMEVI, is inspired from EBF of Zhang and Ji (2019), that also relies on the variance
reduction method to obtain nearly optimal regret bounds. In essence, the technique is used to
control by how much an additive function of a Markov chain drifts away from its expectation,
and is applicable to our reinforcement learning setting, but also in PAC learning for undiscounted
infinite horizon problems Zhang and Xie (2023); Zurek and Chen (2024), finite horizon minimax
regret problems Azar et al. (2017); Efroni et al. (2019); Li et al. (2020); Zanette and Brunskill
(2019); Zhang et al. (2021, 2020), discounted PAC learning Li et al. (2021) and more.

5.1 Deviations of the gain of a fixed policy

If an algorithm has regret guarantees of order
p

sp(h∗)SAT , the algorithm must gather enough
information to estimate optimal policies on the fly. Although regret minimization do not require
the algorithm to certify that the deployed policy is optimal, the algorithm cannot successfully
deploy optimal policies without having some hidden driving mechanism that guarantees that
these policies have high gain. In a dreamed world, we may assume that the algorithm has T
samples for every state-action pair. Given this unreasonable amount of information, to which
precision is the algorithm capable of recovering the gain of a policy?

For simplicity, assume that the reward function is known and that only the kernel are to
be learned. If the algorithm has n samples for every state-action pair, then by denoting p̂n the
empirically observed kernel,1 Weissman’s inequality Weissman et al. (2003) (see Lemma I.23)

1i.e., p̂n(s′|s, a) is proportional to the number of times the transition (s, a, s′) has been observed.
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states that ∥p̂n(z) − p(z)∥1 ≲
p

S/n. So, following the gain deviation inequality in ℓ1-norm
(Theorem II.1), we have:

∥gπ(M̂n)− gπ(M)∥∞ ≲

√

√sp(hπ)2S
n

(II.1)

and the bound is optimal. There are at least two problems with this bound. First, the dependency
in sp(hπ) is off. Second, there is an extra S. The take-home conclusion of (II.1) is that if one
estimates the error of the gain with a ℓ1-norm bound, it shouldn’t be possible to obtain better
regret than

p

sp(h∗)2S2AT ; This is the regret guarantees of UCRL2 Auer et al. (2009) and REGAL
Bartlett and Tewari (2009) that indeed relies on Weissman’s inequality to estimate the error on
the estimated kernel.

From this example, we see that we can trace back the gain deviation inequality (of the type
of (II.1)) used by a method by looking at its regret bound, with the following principle:

If a method achieves a regret of order
p

f (M)SAT, then it must indirectly prove an
inequality of the form ∥g∗(M̂n)− g∗(M)∥∞ ≲

p

f (M)/n.

This also works in the other direction, and an inequality of the form ∥g∗(M̂n)− g∗(M)∥∞ ≲
p

f (M)/n will definitely help to show a regret bound of order
p

f (M)SAT . To start with,
we focus on the estimation of the gain of a single policy, or, equivalently, that the Markov
decision process is a Markov reward process. In this section, we will first focus on how to get
optimal dependency on sp(h∗). The dependency in S is another matter which is related to the
construction of confidence regions rather than to the deviation of the gain function.

Important remark. In the remaining of the paragraph, we consider Markov reward
processes rather than Markov decision processes. The reward vector r is fixed and we
focus on the sensibility of the gain function g on the kernel p. Therefore, we write g(p)
rather than g(r, p).

5.1.1 The Azuma-Hoeffding bound

Denote p the kernel of the policy and assume that p̂n is the empirical estimate of p obtained
by collecting n independent samples of every p(s), s ∈ S . The gain under p, p̂n for the same
reward vector r are denoted g(p) and g(p̂n) respectively. To relate g(p̂n) to g(p), the inequality
that powers methods like UCRL2 Auer et al. (2009), REGAL Bartlett and Tewari (2009) or
KLUCRL Filippi et al. (2010) in the background is Azuma-Hoeffding’s inequality Azuma (1967)
(Lemma I.19), stating that, for all vector u ∈ RS , we have:

∀s ∈ S ,∀n≥ 1,∀x > 0, P((p̂n(s)− p(s))u> x)≤ exp

�

−
2nx2

sp(u)2

�

. (II.2)

In other words, Azuma-Hoeffding’s inequality states that (p̂n(s)− p(s))u is 1
nsp(u)2-sub-Gaussian

(see Boucheron et al. (2013)). Written in terms of error range, we find that (p̂n(s)− p(s))u≤
sp(u)

q

1
2n log( 1

δ ) with probability at least 1 − δ. Motivated by the Azuma-Hoeffding’s style
inequality (II.2), we have the following proposition.

Proposition II.6. Consider two policy kernels p̂ (empirical estimate) and p (true kernel).
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Assuming that (p̂(s)− p(s))h satisfies the single-sided Azuma-Hoeffding’s style inequality:

(p̂(s)− p(s))h≤

√

√sp(h)2ℓ
2n

(II.3)

where n,ℓ > 0 are constants and h≡ h(p). If g(p) ∈ Re then the gain under dynamics p̂ is
upper-bounding as:

g(p̂)≤ g(p) +

√

√sp(h)2ℓ
2n

(II.4)

In particular, if n≥ sp(h)2ℓ
2ε2 , then g(p̂)≤ g(p) + ε.

Proof. The expectations under p, p̂ are respectively denoted E[−] and Ê[−]. We expand the
regard with h(s) = r(s)− g(s) + p(s)h, where g and h are the gain and the bias vectors under
the dynamics p. We have:

Ê

�

T−1
∑

t=0

r(St)

�

= Ê

�

T−1
∑

t=0

(g + h(St)− p(St)h)

�

= T g + Ê

�

T−1
∑

t=0

(eSt+1
− p(St))h

�

= T g + Ê[h(S0)− h(ST )] + Ê

�

T−1
∑

t=0

(p̂(St)− p(St))h

�

(∗)
≤ T g + Ê[h(S0)− h(ST )] + T

√

√sp(h)2ℓ
2n

where (∗) is obtained by (II.3). Divide by T and let it go to infinity.

We immediately see that the dependency in sp(h∗) is sub-optimal. This is because the
Azuma-Hoeffding bound of (p̂n − p)u looses information on higher moments of (p̂n − p)u that
help to carry information from a state to another, that appear crucial in this setting. We need
something that is more refined. This is where the variance reduction method kicks in.

5.1.2 The variance reduction method and the Berstein bound

The insufficient (II.2) is replaced by a variance-aware inequality. Freedman’s inequality Freedman
(1975) (Lemma I.20) states that, for all vector u ∈ RS , we have

∀s ∈ S ,∀n≥ 1,∀x > 0, P((p̂n(s)− p(s))u> x)≤ exp

�

−
x2

2n(xsp(u) +V(p, u))

�

. (II.5)

This means that the tails of (p̂n(s)− p(s))u are sub-exponential for large x and 2
nV(p, u)-sub-

Gaussian for x in neighborhood of 0. This bound can equivalently be written as (p̂n − p)u ≤
q

2
nV(p, u) log( 1

δ )+
4
nsp(u) log( 1

δ ) with probability at least 1−δ, and is more commonly referred
to as Bernstein’s inequality Bernstein (1924). When n is large in front of log( 1

δ ), this bound is
much sharper than Azuma-Hoeffding’s inequality.2 By using this inequality, Proposition II.6 is
improved.

2This is only true if n≫ log( 1
δ ), otherwise Azuma-Hoeffding’s inequality is preferable.
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Proposition II.7. Consider two policy kernels p̂ (empirical estimate) and p (true kernel).
Assuming that (p̂(s)− p(s))h satisfies the single-sided Bernstein-style inequality:

(p̂(z)− p(z))h≤

√

√V(p, h)ℓ
n

+
sp(h)ℓ

n
, (II.6)

where n,ℓ > 0 are constants and h ≡ h(p). If g(p) ∈ Re then the optimal gain under p̂ is
upper-bounded as:

g(p̂)≤ g(p) +
sp(h)ℓ

n
+

√

√2sp(h)ℓ
n

. (II.7)

In particular, if n≥ ( 2
ε2 + 1

ε)sp(h
∗)ℓ, then g(p̂)≤ g(p) + 2ε.

Proof. The strategy starts similarly as in Proposition II.6. The expectations under p, p̂ are
respectively denoted E[−] and Ê[−]. We expand the aggregate rewards with h(s) = r(s)− g(s)+
p(s)h, where g and h are the gain and the bias vectors under the dynamics p. We have:

Ê

�

T−1
∑

t=0

r(St)

�

= Ê

�

T−1
∑

t=0

(g + h(St)− p(St)h)

�

= T g + Ê

�

T−1
∑

t=0

(eSt+1
− p(St))h

�

= T g + Ê[h(S0)− h(ST )] + Ê

�

T−1
∑

t=0

(p̂(St)− p(St))h

�

(∗)
≤ T g + Ê[h(S0)− h(ST )] + Ê

�

T−1
∑

t=0

√

√V(p(St), h)ℓ
n

�

+
T sp(h)ℓ

n

(†)
≤ T g + Ê[h(S0)− h(ST )] + Ê





√

√

√Tℓ
n
·

T−1
∑

t=0

V(p(St), h)



+
Tsp(h)ℓ

n

(‡)
≤ T g + Ê[h(S0)− h(ST )] +

√

√

√Tℓ
n
· Ê

�

T−1
∑

t=0

V(p(St), h)

�

+
T sp(h)ℓ

n

where (∗) follows by (II.6), (†) invokes Cauchy-Schwartz’ inequality, and (‡) invokes Jensen’s
inequality. We now have to deal with the expected sum of variances Ê[

∑T−1
t=0 V(p(St), h)].

Using Bellman’s equation again: V(p(s), h) = p(s)h2 − h2(s) + 2h(s)(r(s)− g(s)). Using that
sp(h2)≤ sp(h)2 and sp(r − g)≤ 1, we get:

Ê

�

T−1
∑

t=0

V(p(St), h)

�

≤ sp(h)2 + 2Tsp(h).

Plug it in the previous equation, divide by T and let it go to infinity.

We obtain an optimal dependency in sp(h). If the support of p̂ is moreover the same as p, or
more generally if the recurrent states under p̂ are a subset of those of under p, we change sp(h)
for the span of the bias truncated to the recurrent states of the policy, leading to improved bounds
for unichain policies. Proposition II.6 and Proposition II.7 are both given as upper bounds, but
lower bounds can similarly be established. In the end, the bound based on Bersntein’s inequality
(Proposition II.7) provides deviations of the gain of a policy of the range of

p

sp(hπ)/n.
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5.2 Deviations of the optimal gain of a Markov decision pro-
cess

If the bound of Proposition II.7 is tight and the gain of a policy truly varies with
p

sp(hπ) then
we are in trouble, because the gain of the policy with the highest bias span is then difficult to
estimate. Then minimax lower bound requires to make everything depend on sp(h∗), hence
the variations of the gain of every policy must inevitably be controlled with respect to

p

sp(h∗)
rather than

p

sp(hπ). Thankfully, there is the following remarkable result.

Proposition II.8. Consider a communicating Markov decision process M ≡ (Z , p, r) and
let p̂ another kernel. Under the assumption that (p̂(z)− p(z))h∗ satisfies the single-sided
Bernstein-style inequality:

(p̂(z)− p(z))h∗(M)≤

√

√V(p(z), h∗)ℓ
n

+
sp(h∗)ℓ

n
(II.8)

where n,ℓ > 0 are constants, then the optimal gain under p̂ is upper-bounded as:

g∗(r, p̂)≤ g∗(M) +
3sp(h∗(M))

2n
+

√

√2sp(h∗(M))ℓ
n

. (II.9)

In particular, if n≥ ( 2
ε2 + 3

2ε)sp(h
∗)ℓ, then g∗(r, p̂)≤ g∗(M) + 2ε.

I have claimed earlier that a method achieving a regret of order
p

sp(h∗)SAT must indirectly
prove an inequality of the form ∥g∗(M̂n)− g∗(M)∥∞ ≲

p

sp(h∗)/n. The proof of Proposition II.8
was actually extracted from the regret analysis of EBF of Zhang and Ji (2019), which was then
the only algorithm achieving minimax optimal regret, and can be thought as a heavily simplified
regret analysis. Also, this proof is a good entry to the ideas behind the regret analysis of PMEVI.

Proof. We expand the reward again via the Poisson equation h∗(s) = r(s, a)− g∗(s) + p(s, a)h∗ +
∆(s, a). Using this, we obtain:

Êπ̂
�

T−1
∑

t=0

r(Zt)

�

= Êπ̂
�

T−1
∑

t=0

(g∗(St) + h∗(St)− p(Zt)h
∗ −∆∗(Zt))

�

= T g∗ + Êπ̂
�

T−1
∑
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(h∗(St)− p̂(Zt)h
∗)

�

+ Êπ̂
�

T−1
∑

t=0

(p̂(Zt)− p(Zt))h
∗

�

− Êπ̂
�

T−1
∑

t=0

∆∗(Zt)

�

≤ T g∗ + sp(h∗) + Êπ̂
�

T−1
∑

t=0

(p̂(Zt)− p(Zt))h
∗

�

− Êπ̂
�

T−1
∑

t=0

∆∗(Zt)

�

.

This is quite important not to throw again the negative term Êπ̂[
∑T−1

t=0 ∆
∗(Zt)] that will cancel

out an important term shortly. We expand (p̂(Zt)− p(Zt))h∗ using the assumed Bernstein-style
inequality (p̂(Zt)− p(Zt))h∗ ≤

p

V(p(Zt), h∗)ℓ/n+ sp(h∗)ℓ/n, leading to:

Êπ̂
�

T−1
∑

t=0

(p̂(Zt)− p(Zt))h
∗

�

=
sp(h∗)Tℓ

n
+ Êπ̂

�

T−1
∑

t=0

√

√V(p(Zt), h∗)ℓ
n

�
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(∗)
≤

sp(h∗)Tℓ
n

+ Êπ̂





√

√

√

T ·
T−1
∑

t=0

V(p(Zt), h∗)ℓ
n





(†)
≤

sp(h∗)Tℓ
n

+

√

√

√Tℓ
n
· Êπ̂

�

T−1
∑

t=0

V(p(Zt), h∗)

�

where (∗) follows from Cauchy-Schwartz’ inequality and (†) from Jensen’s inequality. We again
have to control the term Êπ̂[

∑T−1
t=0 V(p(Zt), h∗)]. Using the Poisson equation again, we have:

V(p(s, a), h∗) = p(s, a)h∗2 − h∗(s)2 + 2h∗(s)(∆∗(s, a) + r(s, a)− g∗(s)).

Therefore, and using sp(h∗2)≤ sp(h∗)2, we get:

Êπ̂
�

T−1
∑

t=0

V(p(Zt), h∗)

�

≤ sp(h∗)2 + 2Tsp(h∗) + 2sp(h∗)Êπ̂
�

T−1
∑

t=0

∆∗(Zt)

�

.

All together, we have:
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T g∗ + sp(h∗)Tℓ
n + T

Ç
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+
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T · 2sp(h∗)ℓ
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+
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T · sp(h∗)2ℓ
n + sp(h∗)















(II.10)

Denoting x := Êπ̂[
∑T−1

t=0 ∆
∗(Zt)], we get an equation of the form Êπ̂[

∑T−1
t=0 r(Zt)] ≤ Tα(T) +

β(T )
p

T x − x where the values of α(T ) and β(T ) should be readily obvious. Straight forward
analysis shows that β(T)

p
T x − x ≤ 1

4β
2(T)T , therefore, by dividing by T in the above and

letting it go to infinity, we get:

ĝ π̂ ≤ g∗ +
3sp(h∗)ℓ

2n
+

√

√2sp(h∗)ℓ
n

.

To conclude the proof, observe that 3sp(h∗)ℓ/(2n) ≤ ε is equivalent to n ≥ 3
2εsp(h

∗)ℓ, while
p

2sp(h∗)ℓ/n≤ ε is equivalent to n≥ 2
ε2 sp(h∗)ℓ. So, if n≥ ( 2

ε2 + 3
2ε)sp(h

∗)ℓ, both are satisfied.
This concludes the proof.

This result is remarkable for the following reason: Whatever the policy, under kernel
perturbation, its gain cannot move to much beyond the optimal gain with respect to

p

sp(h∗)
rather than

p

sp(hπ). In opposition to the single policy results Propositions II.6 and II.7, the
proof technique of Proposition II.8 cannot be used to show that gπ(p̂)≥ gπ(p)−O(

p

sp(h∗)/n)
and this is actually wrong. However, if policy is a bias optimal policy and if (p̂(z)− p(z))h∗ ≥
−
p

V(p(z), h∗)ℓ/n− sp(h∗)ℓ/n, Proposition II.7 can be adapted to show that gπ(p̂)≥ gπ(p)−
O(
p

sp(h∗)/n). In other words, all bias optimal policies of M are nearly optimal in (r, p).
The technique used in the proof of Proposition II.2 is, to some extent, a prototype version

of the regret analysis of PMEVI. In (II.10), we observe the presence of x =
∑T−1

t=0 ∆
∗(Zt) with

is nothing less than the first order regret induced by iterating that policy, and we already see
appear an equation mixing x and

p
x where we show that the term

p
x is negligible and can be

ignored. This kind of argument will come back in the analysis of PMEVI.

Corollary II.9. Consider a communicating Markov decision process M ≡ (Z , p, r) and let p̂ another
kernel. Under the assumption that (p̂(z)− p(z))h∗ satisfies the two-sided Bernstein-style inequality:

|(p̂(z)− p(z))h∗(M)| ≤

√

√V(p(z), h∗)ℓ
n

+
sp(h∗)ℓ

n
(II.11)
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where n,ℓ > 0 are constants, then the optimal gain under p̂ satisfies

∥g∗(r, p̂)− g∗(M)∥∞ ≤
6sp(h∗(M))

2n
+ 2

√

√2sp(h∗(M))ℓ
n

. (II.12)

Also, if n ≥ ( 2
ε2 + 3

2ε)sp(h
∗)ℓ, then ∥g∗(r, p̂)− g∗(M)∥∞ ≤ 4ε and all bias optimal policies of M

are 4ε-gain optimal in M̂ ≡ (r, p̂).

5.3 A few comments on the optimality of these bounds

Corollary II.9 convey the main message and illustrate the technique behind the heavier proof
of PMEVI in Chapter 7. However, much more could be said about gain deviation bounds. For
instance, sp(h∗) could actually be changed to the span of the bias function truncated to the
recurrent states of the optimal policy. Actually, the dependence of all these bounds in

p

sp(h)T
can be improved to

Æ

T
∑

s µ(s)V(p(s), h) by avoiding to expand the sum of variances. The
displayed technique can also be adapted to bound the deviations of

∑T−1
t=0 Rt in high probability

and leads to similar bounds. In this direction, Freedman’s inequality (Lemma I.20) together
from ideas of the original works of Freedman (1975) lead to an iterated logarithm law for
aggregate rewards and central limit theorems. Concerning the way h∗(M) may be used to
bound the gain deviations of all policies, it is likely that a few interesting points are still to
be understood. However, the fixed policy setting is morally dealt with, because it is about
the asymptotic behavior of additive functionals on Markov chains and this problem has been
intensively investigated. As an entry point to this literature, one can go through the works of
Maxwell and Woodroofe (2000); Peligrad (2020) about central limit theorems on

∑T−1
t=0 Rt and

explore the neighborhood literature.



Chapter 6

Optimism in the face of uncertainty

The nearly minimax optimal algorithm presented in this chapter belongs to a large family of
algorithms that follow the optimism-in-the-face-of-uncertainty principle (OFU), stating that
whenever one lacks clear evidence to determine the value of something, this value should be
estimated as high as statistically plausible; In other words, be optimistic about the so-called
value. The term value is purposely vague as there are multiple way to implement optimism,
the kind of objects that are attached a value, or the very nature of this value. To give an idea
of why optimism is a natural approach to regret minimization, let me provide a variant of the
motivation of Lattimore and Szepesvári (2020) that people that know me will recognize.

Say that you wander in a city, looking for the best place to drink a coffee. Although Google
Maps provides prior information on the coffee that you will get, it is only by going at a coffee
shop that you may know if the place suits you. And yet, your experience is subject to stochasticity,
as the music can be trapped in the worst part of the playlist, the current coffee brew may not be
to your taste, today’s sweets may not be to your liking or a bunch of children may have decided
to investigate the place. Nonetheless, some coffee shops are better than others, depending on
how much the baristas are coffee nerds, the skills of the cake baker, the location or whatnot. By
being optimistic, you will try most of the places downtown several times, and progressively have
a better and better idea of the place that suits the best, so that you can progressively be less and
less optimistic and spend most of your time in your favorite coffee shops. By being pessimistic,
you will try a few places until you find one that meets your basic requirements, and are very
likely to completely miss the place that would have been the best. You may even flag as bad a
place that is actually great, just because the only time you tried it, you had a worse experience
than what the place usually offers.

How much should you be optimistic depends on how much you are sensitive to the coffee’s
quality (i.e., the cost of a suboptimal action) but also on how much you dislike changing places,
especially during summer (i.e., the cost of switching strategy). The second point is already a
difference with the book of Lattimore and Szepesvári (2020), because it means that we absolutely
want to avoid changing strategies too often.

Important remark. Optimism is not the only way. The main challenger to optimism is
posterior sampling, where in face of several possible strategies, you pick one propor-
tionally to how much you believe this strategy is likely to be optimal. This line originates
from repeatedly rediscovered work of Thompson (1933) which is originally a learning
algorithm for multi-armed bandits. A few variants exist for Markov decision processes,
including PSRL of Osband and Roy (2017); Osband et al. (2013), TSDE of Ouyang et al.
(2017) and Optimistic-PSRL Agrawal and Jia (2023). The ideas of posterior sampling
are very promising and do seem, to my taste, to be largely under explored in undiscounted
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infinite horizon reinforcement learning.

6.1 Confidence regions and policy-wise optimism

Perhaps the first algorithm to implement the idea of optimism in the multi-armed bandit setting
is the seminal paper of Lai and Robbins (1985) and optimism is already present in the paper of
Burnetas and Katehakis (1997) on ergodic Markov decision processes. The algorithm PMEVI
presented downstream relies on a policy-wise optimism that can be given credit to UCRL2 of
Auer et al. (2009), at least in its current form. The idea is that at a given time, the planner will
choose which policy to play based on the maximal plausible gain of that policy. This maximal
plausible gain is will referred to as the optimistic gain of the policy and depends on how the
planner shapes their uncertainty; Namely, on the confidence region built for the hidden model
M . This confidence regionMt is built out of the current observations Ot := (S0, A0, R0, . . . , St).
The optimistic gain of policy π is computed as the largest achievable gain gπ( eM) for eM ∈Mt .

Definition II.2. For π ∈ ΠSR, the optimistic gain of π onMt is the vector gπ(Mt) ∈ RS

given by:
gπ(s;Mt) := sup

eM∈Mt

gπ(s; eM). (II.1)

The optimistic gain is maxπ gπ(Mt).

These optimistic gains will be later rewritten as optimal gains of well chosen models.
The general architecture of policy-wise optimistic algorithms is given with Algorithm II.1.

Over time, the planner maintain a current policy πk that is used to pick actions until it is
decided obsolete and is renewed. The time segment {tk, . . . , tk+1 − 1} on which this policy is
used is referred to as an episode. The test (on line 3) deciding whether a policy should be
changed or not is the episode rule. When the policy is changed (on line 4), it is picked as a
policy maximizing the optimistic gain from the current state; We say that the planner picks an
optimistic policy. This choice may not be unique, especially when information is lacking in the
early learning phases, and ties are broke according to the tie breaking rule.

Algorithm II.1 The architecture of policy-wise optimistic algorithms.

1: k← 0, initialize π0;
2: for t = 0,1, . . . do
3: if current policy πk is obsolete then
4: πk← arg maxπ gπ(St ;Mt);
5: k← k+ 1;
6: tk← t;
7: end if
8: πt ← πk;
9: Iterate πt , i.e., play At ∼ πt(−|St), observe reward Rt and transition St+1;

10: end for

As discussed in Bourel et al. (2020); Fruit (2019); Fruit et al. (2018), breaking ties by
randomizing the policy is usually a good choice because ties usually happens in the early phase
where exploration must be prioritized. Apart from tie breaking, policy-wise optimistic algorithms
have two essential elements of design.

(1) (Confidence region) The choice of confidence regionMt ; and
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(2) (Episode rule) The way policies are terminated, i.e., episodes ended.

The choice of confidence region has a direct impact on the regret. If too loose, the algorithm will
be over-optimistic and play suboptimal policies for longer times than required; If too narrow, the
algorithm will be under-optimistic and has non-negligible chances to utterly miss the optimal
policy and commit instead to playing a suboptimal policy. The choice of episode rule is also
important, but do not need careful tuning to achieve minimax optimal regret. It plays a different
role that will be discussed in Part IV.

So, how should be the confidence region be chosen?

6.2 Extended MDPs and Extended Value Iteration (EVI)

Behind the choice of the confidence region hides a significant difficulty. How should the optimistic
policy be computed (at line 4)? A few works, such as Bartlett and Tewari (2009); Zhang and
Ji (2019) avoid the question and make use of oracles to extract optimistic policies from their
confidence region. If the confidence region has a specific form however, optimistic policies can
be computed with a variant of Value Iteration (Algorithm I.1) since Nilim and El Ghaoui (2005).

Definition II.3 (Nilim and El Ghaoui (2005)). A confidence regionMt is said rectangular or
in product form if it can be written as Mt ≡

∏

z∈Z (Rt(z) × Pt(z)), where Rt(z) ⊆ R and
Pt(z) ⊆ P (S ) are the respective confidence regions for r(z) and p(z).

In other words, a confidence region is in product form if it is made of a collection of
independent confidence region: one for every reward and kernel. Under this assumption,Mt
can be seen a Markov decision process with compact action space that we call an extended
Markov decision process. The proper construction is due to Auer et al. (2009).

Definition II.4 (Auer et al. (2009)). Given a compact confidence regionMt in product
form, the extended formulation ofMt is the Markov decision process similarly denoted
Mt ≡ ( eZt , p̃, r̃) with state space S and action space:

fAt(s) :=
⋃

a∈A (s)
{a} ×Rt(s, a)×Pt(s, a) (II.2)

called extended actions. It extended pair space is denoted eZt . When choosing an extended
action ã = (a, r ′(s, a), p′(s, a)), we have r̃(s, ã) := r ′(s, a) and p̃(−|s, ã) := p′(−|s, a).

Remark that policies of Mt are extended policies and consist in tuples π̃ ≡ (π, p′, r ′)
consisting in a standard policy π as well as a Markov reward process (r ′, p′) modeling the
dynamics under this policy. By seeing Mt as a Markov decision process, we can import all
the standard machinery of Markov decision process introduced in Part I: the gain, the bias,
Poisson equations, Bellman equations and algorithms that compute optimal policies such as
Value Iteration (Algorithm I.1).

Yet, there is an obvious issue.

6.2.1 The Pitfall: Compact action spaces and Bellman equations

The extended formulation of Mt has compact action space space, and in Part I only gave a
treatment of finite state and action spaces models. As a matter of fact, Bellman equations are not
always guaranteed to have solutions if the action space is infinite (e.g., continuous and compact).
This disproportionate detail is not mild although it is often overlooked in the reinforcement
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learning literature. To my knowledge, only Fruit (2019) mentions the issue. Some works spot
the issue from afar to miraculously dodge it, becauseMt can sometimes be reduced to a finite
action space, in particular whenMt is a polyhedron, for example in Auer et al. (2009); Bourel
et al. (2020); Fruit et al. (2020, 2018). Some other works fall short of handling the issue and
this is the case of KLUCRL of Filippi et al. (2010); Maillard (2019).

The existence of solutions to the Bellman equations for (weakly communicating) infinite
action spaces Markov decision processes is due to Schweitzer (1985) and requires non trivial as-
sumptions. It the action spaces are compact however, Schweitzer (1987) provides a simpler proof
under the communicating assumption with a proof based on Brouwer’s fixpoint theorem; The
communicating assumption is someway mandatory because beyond the communicating setting,
optimal policies of compact action spaces models are not guaranteed to be time-independent
anymore. Before diving in, randomized policies of models with compact action spaces need a
few words, because the action space may become infinite. When the action space is compact,
a randomized policy π is map π : s ∈ S 7→ π(−|s) ∈ P (A (s)) where P (A (s)) is the space
of Borel probability measures on A (s). By continuity of the reward and kernel functions, a
randomized policy has a well-defined reward vector rπ and kernel pπ. Therefore, even though
the compact action space may be infinite and the policy π randomized, its gain and bias functions
gπ and hπ are still well-defined by Definition I.5 and Definition I.7. The space of deterministic
and randomized policies are respectively denoted ΠSD and ΠSR.

Proposition II.10 (Schweitzer (1985)). Let M ≡ (Z , p, r) be a weakly-communicating
Markov decision process with finite state space S and compact action spaces A (s).a Let
g∗(s) := supπ∈ΠSR gπ(s) the optimal gain vector and denote Π∗ := {π ∈ ΠSR : gπ = g∗}. If
the condition

Π∗ ∩ΠSD ̸=∅ and sup
π∈Π∗∩ΠSD

max(hπ)<∞ (II.3)

is met, then g∗ ∈ Re and there exists h∗ ∈ RS satisfying the Bellman equation g∗ + h∗ =
maxπ∈Π(rπ + Pπh∗). Moreover, any greedy response to h∗ achieves optimal gain g∗.

aWe assume that r(s,−) and p(s,−) are continuous functions of a ∈A (s).

The first condition “Π∗∩ΠSD ̸=∅” states that gain optimal stationary policies must exist. The
second condition “supπ∈Π∗∩ΠSD max(hπ)” means that no gain optimal policies can make a state
arbitrarily good, because hπ(s) measures what is scored in addition to the gain from state, hence
the higher hπ(s), the greater the advantage to initialize the dynamics at s under π. Roughly
speaking, the higher is hπ(s), the better is s under the policy π. The result of Schweitzer (1985)
is actually an equivalence and the pair of conditions (II.3) is also necessary for the existence of
a solution to the Bellman equations. If failing, the Bellman equations have no solution.

Remarkably, if the action space is compact, the communicating assumption is sufficient.

Proposition II.11 (Schweitzer (1987)). Let M = (Z , p, r) a communicating Markov
decision process with finite state space s with compact action space.a Then:

(1) Its Bellman operator L : u ∈ RS 7→maxπ∈ΠSD(rπ + Pπu) admits a span-fixpoint, i.e.,
∃u ∈ RS , Lu− u ∈ Re;

(2) If p(s|s, a)> 0 for all (s, a) ∈ Z , then the iterates of the Bellman operator converge
to a span fixpoint with geometric speed, i.e., there is γ < 1 such that whatever the
initialization u ∈ RS , sp(Ln+1u− Lnu) = o(γn) when n→∞.

aWe assume that r(s,−) and p(s,−) are continuous functions of a ∈A (s).
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The existence of a span fixpoint of the Bellman operator is equivalent to the solution to
the Bellman equations. Indeed, if h∗ is the span fixpoint, then letting g∗ := L ∈ Re, we
see that g∗(s) + h∗(s) ≥ r(s, a) + p(s, a)h∗ with equality for at least one action a ∈ A (s),
showing that Bellman optimal policies exist (see Definition I.9). Such greedy responses to u (see
Definition I.12) are gain optimal (see Proposition I.4) and Proposition I.8 is straightforwardly
generalized to models with compact action spaces: Greedy responses to ε-fixpoints of the
Bellman operator are ε-gain optimal policies. Moreover, the convergence of the iterates of L is
fast provided that p(s|s, a)> 0 that can always be assumed up to an aperiodic transform, hence
guaranteeing the convergence of Lazy Value Iteration (Algorithm I.2).

The communicating assumption is not necessary in Proposition II.11, but one enters dan-
gerous territories by dropping it as gain optimal policies may not be stationary anymore, see
Leizarowitz (2002). Thankfully, all the extended Markov decision processes that we will be
considering correspond to communicating compact action space models, hence Proposition II.11
will be enough to guarantee the well-definition of their gain and computational tractability.

6.2.2 Optimistic models and Extended Value Iteration

With Proposition II.11, we can provide generic properties guaranteeing the well-definition of
the optimistic gain. We can now provide a more complete description of the optimistic gain and
introduce the notion of optimistic model.

Corollary II.12. LetMt a rectangular confidence region and let Lt the Bellman operator
of its extended formulation, called the extended Bellman operator. Assume that, for all
z ∈ Z , there exists p′(z) ∈ Pt(z) of full support. Then:

(1) Lt has a span fix-point and the optimistic gain satisfies g∗(Mt) =maxπ gπ(Mt);
(2) Given π ∈ Π(Z ), defineMπ

t :=
∏

s∈S
∑

a∈A (s)π(a|s)(Rt(s, a)×Pt(s, a)) the confi-
dence region for π, and let L π

t the Bellman operator of its extended formulation. The
optimistic gain of π satisfies gπ(Mt) = g∗(Mπ

t );
(3) Running Lazy Value Iteration (Algorithm I.1) with Lt or L π

t converges geometrically
fast to a near span fixpoint of the respective operators.

Every extended greedy response to Lt is a triple (π, r ′, p′) of a choice of actions, of rewards
and of kernels of these actions. The couple (r ′, p′) is called an optimistic model of π.

The condition “for all z ∈ Z , there exists p′(z) ∈ Pt(z) of full support” is always met, but
is worth pointing out. As explained earlier, if the extended Mt is not communicating (e.g.,
multi-chain), then none of the above is guaranteed to hold.

From a computational perspective, the third assertions states that Lazy Value Iteration is
guaranteed to converge. In the literature, most algorithms rely on Value Iteration (Algorithm I.1)
to compute optimistic gains and policies that converges without requiring an aperiodicity
transform, because the extended modelMt is usually aperiodic already. The algorithm consists
in iterating the extended Bellman operator:

Ltu(s) := max
a∈A (s)

max
r ′(s,a)∈Rt (s,a)

max
p′(s,a)∈Pt (s,a)

�

r ′(s, a) + p′(s, a)u
	

= max
a∈A (s)

§

max(Rt(s, a)) + max
p′(s,a)∈Pt (s,a)

p′(s, a)u
ª

.
(II.4)

We observe that the computation of the extended Bellman operator (II.4) can be decoupled as
a maximization problem other rewards (max(Rt(s, a))) which is generally trivial, and as the
maximization of a linear functional (maxp′(s,a)∈Pt (s,a) p

′(s, a)u) which is solved with confidence
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region specific algorithms and oppose no real difficulty in general. Because the extended Bellman
operator is iterated in place of the Bellman operator, this algorithm is referred to as Extended
Value Iteration (EVI), see Auer et al. (2009). Once it has converged to an εt -span fixpoint, the
algorithm extracts a greedy policy to deploy as the current policy.

Algorithm II.2 EVI-based optimistic method.

1: k← 0, initialize π0;
2: for t = 0,1, . . . do
3: if current policy πk is obsolete then
4: uk← EVI(Mt ,εt , 0S );
5: πk← any π s.t. Lt(uk) =L π

t (u
k);

6: k← k+ 1; tk← t.
7: end if
8: Set πt ← πk and iterate πt .
9: end for

Algorithm II.3 Extended Value Iteration (EVI).
Parameters: A regionMt , a precision ε > 0, an
(optional) u0 ∈ RS ;

1: if u0 is not initialized then u0← 0 · e;
2: for n= 1,2, . . . , do
3: un←Ltun−1; ▷ Extended B.O.
4: if sp(un − un−1)< ε then break;
5: end for
6: return un.

6.3 EVI-based algorithms in the literature

Many existing algorithms are specific instances of Algorithm II.2 with different confidence
regions, depending on the norm used to measure errors, and variants of the same episode rule.

6.3.1 The eminent doubling trick

Most methods use the doubling trick (DT) or variants thereof to manage episodes. Simply
stated, the doubling trick says that the episode must be terminated once a playable pair has
doubled its visit counts since the beginning of the episode. Recall that the visit counts of a pair
is given by NT (z) :=

∑T−1
t=0 1(Zt = z). The doubling trick is formally given by:

tk+1 = inf
�

t > tk : ∃a ∈A (St), Nt(St , a)≥ 1∨ 2Ntk
(St , a)

	

. (DT)

When πt−1 is deterministic, this condition is equivalent to πt−1(St)) ≥ 2Ntk
(St ,πt−1(St)),

i.e., the pair that is about to be played has doubled its number of visits since the beginning
of the episode. This simple rule is easy to implement and will be enough to achieve minimax
optimal regret.

Remarkably, it guarantees that the number of episodes K(T ) is logarithmic K(T ) = O(log(T )),
see Auer et al. (2009).

6.3.2 Choosing the right confidence region

The minimax lower bound points out that the tedious part of the learning task comes from
learning kernels; Also most of the literature focuses on finding the type of kernel confidence
region that provides the better regret guarantees. Among them, three are dominant.

• ℓ1-confidence regions. The errors on kernels are quantified using the ℓ1-norm. Such
confidence regions are constructed out of Weissman’s inequality (Lemma I.23) and
take the form of:

Pt(z) := {p′(z) ∈ P (S ) : ∥p′(z)− p̂t(z)∥2
1 ≤ Sx}. (II.5)
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• KL-confidence regions. The error on kernels are quantified using the Kullback-Leibler
divergence. Such confidence regions are constructed using inequalities on the empirical
likelihood of observation (Lemma I.25) and take the form of:

Pt(z) := {p′(z) ∈ P (S ) : KL(p′(z)||p̂t(z))≤ Sx}. (II.6)

• Bernstein confidence regions. The error on kernels are quantified using an empirical
Bernstein inequality (Lemma I.26). Such confidence regions take the form of:

Pt(z) :=
¦

p′(z) ∈ P (S ) : ∀s ∈ S , |p′(s|z)− p̂t(s|z)| ≤
Æ

p̂t(s|z)(1− p̂t(s|z))x + x
©

.
(II.7)

In (II.5), (II.6) and (II.7), p̂t(z) is the empirically observed transition kernel at z at time
t and x > 0 measures the confidence level of the confidence region and is typically of order
x ≍ log(t/δ)/Nt(z) where Nt(z) is the number of visits of the pair z prior to time t and δ > 0
is the desired probability of error. For instance, ℓ1-confidence regions include UCRL Auer and
Ortner (2006), UCRL2 Auer et al. (2009); KL-confidence regions are specific to KLUCRL Filippi
et al. (2010); Talebi and Maillard (2018); Bernstein-confidence regions include UCRL2-B Fruit
et al. (2020), UCRL-V Tossou et al. (2019) and arguably UCRL3 Bourel et al. (2020).1

The shape of these confidence regions are displayed on Figure 6.1, that shows clearly that
no confidence region is overwhelmingly better than the others. In practice, when the confidence
level x > 0 is bounded away from 0, they all have pro and cons. The ℓ1 and Bernstein confidence
regions are simple polyhedral shapes that are algorithmically convenient. The ℓ1-confidence
region is completely symmetric while Bernstein’s inequality isn’t, by taking into account transition
specific variances. However, especially for x ≫ 1, Bernstein’s inequality is often worse than
Weissman’s inequality meaning that for rarely visited pairs, Weissman’s inequality is preferable
to Bernstein’s. The KL-confidence region is smoother, but is more computationally expensive to
track. However, it leads to much better regret than the two others in experiments. Also, although
the regions provided by (II.5), (II.6) and (II.7) are qualitative, tuning x > 0 is important in
practice; Every constant matters as it will impact the behavior of the algorithm in the early steps
and influence the tendency of the algorithm to over-explore.

These kernel confidence regions are easily generalized to provide reward confidence regions
as well, although many works don’t bother much about rewards and choose a ℓ1-confidence
region based on Azuma-Hoeffind’s inequality (Lemma I.19).

6.4 Regret analysis and encountered challenges

The regret of Algorithm II.1 is decomposed episodically, as the actually collected rewards are
compared to what the planner is expecting to obtain. At episode k, the current policy is πk = πtk

,
and we denote (r̃k, p̃k) the optimistic model of πk underMtk

(Corollary II.12). To simplify the
computation, we assume that πk is deterministic. The optimistic gain and bias vectors of πk are
denoted g̃k := g(r̃k, p̃k) and h̃k := h(r̃k, p̃k). The regret decomposition follows these steps:

1UCRL3 is heavily hand-tuned, making it difficult to fit this simple classification. It relies on finely tuned
confidence bounds, based on Azuma-Hoeffding’s inequality with tuned variance parameters, making them variance-
aware and close in spirit to Bernstein’s inequality. Also, UCRL3 relies on a variant of EVI called EVI-NOSS that
produces near-optimistic policies and tries to stick to optimistic kernels p′(z) ∈ Pt(z) with the same support as the
empirical kernel p̂t(z).
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Figure 6.1: The big three of confidence regions in reinforcement learning. (From left to
right) ℓ1-confidence region, KL-confidence region and Bernstein confidence region for a three-
dimensional kernel p = 1

15(8,2,5) and the same confidence level. On every plot, the main
confidence region is displayed with a filled gray region, and the two others are displayed with a
dotted outline for easier comparison.

Main terms in the regret decomposition of Auer et al. (2009):

T g∗ −
T−1
∑

t=0

Rt

Definition of Reg(T)

T−1
∑

t=0

(g∗ − r(Zt))

Remove reward noise

∑

k

tk+1−1
∑

t=tk

( g̃k− r̃k(St))

Episodic decompo-
sition + optimism

∑

k

tk+1−1
∑

t=tk

(eSt
− p̃k(St))h̃

k

Optimistic Poisson
equation of πk

∑

k

tk+1−1
∑

t=tk

(pπ
k
(St)− p̃k(St))h̃

k

Focus on optimistic
dynamical error

This decomposition is due to Auer et al. (2009). At every step spawns an error term that is
negligible in front of the optimistic dynamical error

∑

k

∑tk+1−1
t=tk

(pπ
k(St ) − p̃k(St))h̃k which is

usually the focus of the analysis. To simplify notations a little bit, we write pk for the true
kernel of πk. The initial technique of Auer et al. (2009) is to bound (pk(St)− p̃k(St))h̃k(St)
with the improved Hölder’s inequality |(pk(St)− p̃k(St)|h̃k ≤ 1

2∥p
k(St)− p̃k(St)∥1sp(h̃k). If the

confidence regionMtk
doesn’t fail, it contains M hence D(Mtk

)≤ D(M), so by Proposition II.2
the optimistic span is bounded by the true diameter sp(h̃k) ≤ D(M). Intuitively, this means
that optimism doesn’t make some states unreasonably better than others. Hence, provided that
M ∈Mtk

for all k ≥ 1, the optimistic dynamical error is bounded as:

∑

k

tk+1−1
∑

t=tk

�

pk(St)− p̃(St)
�

h̃k ≲
1
2

D(M)
∑

k

tk+1−1
∑

t=tk



pk(St)− p̃(St)




1. (II.8)

For UCRL2, that uses ℓ1-confidence region for kernels, this norm is O(
Æ

S log(T )/Ntk
(St ,πk(St))).

The doubling trick makes sure that Nt(Zt)≤ 2Ntk
(Zt), hence we obtain:

∑

k

tk+1−1
∑

t=tk

�

pk(St)− p̃(St)
�

h̃k ≈ O

�

D(M)
∑

k

tk+1−1
∑

t=tk

√

√S log(T )
Nt(Zt)

�

= O

 

D(M)
∑

z∈Z

NT (z)
∑

n=1

√

√S log(T )
n

!

= O

�

D(M)
∑

z∈Z

Æ

SNT (z) log(T )

�

(∗)
= O

�

D(M)
Æ

S · SAT · log(T )
�

where (∗) uses that
∑

z∈Z NT (z) = T to conclude with Jensen’s inequality. We obtain a regret
bound of order DS

p

AT log(T ). Depending on the kernel confidence region, the inequality (II.8)
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is changed for another. Past (II.8), the computation is tight, i.e., the computations that follow
don’t lose information. Prior to (II.8), one can check that the error terms are O(

p

SAT log(T )),
hence are negligible in front of

p

DSAT log(T ). The extra
p

DS is therefore due to the bound
(II.8). Improving the bound on (II.8) is the main focus of all the literature on optimistic methods.

6.4.1 Shaving one
p

D with variance aware confidence regions

In Chapter 5, we have argued that the Hölder bound on (p̂t − p)u is incapable of leading to
tight bounds on the deviation of the gain function; This is no surprise that the computation
following (II.8) in Section 6.4 is short of getting the right dependency on the diameter. This
is because Hölder’s inequality does not take the variance into account. By using variance-
aware concentration inequalities and variance-aware kernel confidence regions (such as the
KL-confidence or the Bernstein confidence region), the right dependency on the diameter can be
obtained. Examples are UCRL2-B Fruit et al. (2020) and UCRL3 Bourel et al. (2020) (Bernstein
confidence regions) and KLUCRL Talebi and Maillard (2018) (KL-confidence region). Despite
addressing the diameter dependency correctly, these methods still suffer from an extra

p
S in

their regret guarantees.
This can be explained as follows. At the end of the day, we want to bound (p̃(z)− p(z))h̃

and this is done by quantifying the maximum likely error on (p(z)− p̂n(z))u, where p̂n(z) is the
empirically observed transition kernel at z, for u ∈ RS with ∥u∥1 = 1 up to normalizing. With a
bit of information theory, with n samples, the best bound possible is of order:

|p(z)− p̂n(z)|u≤

√

√

√2V(p(z), u) log
�

1
δ

�

n
+O

�

log
�

1
δ

�

n

�

(II.9)

where the O( 1
n) term is due to the higher order moments of (p(z)− p̂n(z))u. This is by the way

the idea behind Bernstein’s inequality. However, (II.9) is achievable only if u is fixed. Here, u
models h̃/∥h̃∥1 which is unknown in advance, so a union bound is performed for all possible
values of u, and the question becomes:

What is the best possible bound for Un :=maxu:∥u∥1=1(p(z)− p̂n(z))u?

When we pick p(z) = ( 1
S , . . . , 1

S ) as the uniform distribution, we have Un =
1
2

∑

s∈S |p̂n(s|z)−
1
S | so

E[Un] =
S
2E|p̂n(s|z)−

1
S | and it is an amusing exercise to show that E[Un]≳

1
2

p
πnS when n→∞.

Therefore, one expects that an upper bound in the style of (II.9) that holds simultaneously for
all u ∈ RS satisfying ∥u∥1 = 1 to grow as Θ(

p

S log(1/δ)/n). This is the case for Weissman’s
inequality Weissman et al. (2003) for instance.

The take-home idea is the following.

Important idea. If one wants to bound the error on the co-vector p̂n(z)− p(z) in every
direction, the bound should scale as

p

S log(1/δ)/n. Because in finite dimension, co-
vectors and vectors are naturally identifiable, it means that any kernel confidence region
must scale with

p
S.a And indeed, all the sub-optimal methods ranging from UCRL2 to

UCRL3 in Table 2.1 suffer from this extra
p

S: Because if the kernel confidence region
does not contain

p
S by design, then it is too narrow.

aThis is the mistake made in the design of UCRL-V Tossou et al. (2019) that tries to escape the
p

S-factor
by using sub-modularity; There kernel confidence region ends up being too narrow.
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6.4.2 Shaving one
p

S by moving beyond EVI
The previous paragraph motivates the idea that EVI-based algorithm (Algorithm II.2) cannot
get rid of the

p
S-factor unless their kernel confidence region is over-aggressive. This means

that something new is needed. Thankfully, there already exists an algorithm achieving minimax
optimality: EBF Zhang and Ji (2019). In this work, the authors identify a collection of properties
that, if always satisfies by the optimistic policy, guarantee minimax optimal regret. Although
this work is short of providing a way to find such a policy in the ocean of all existing policies,
or even of providing a way to verify that a policy satisfies all the requirements, they initiate
an important idea: Only the deviations of p̂n(z)− p(z) at h∗ matter, and h∗ can be estimated
with an external subroutine. So, if h∗ is estimated by some u ∈ RS , we morally want to stick
to optimistic kernels p̃(z) such that (p̃(z)− p̂n(z))u satisfies an inequality in the style of (II.9)
without that additional

p
S. This idea will lead to the mitigation operation of PMEVI.

This will be better discussed in Chapter 7.

6.4.3 Changing D to sp(h∗)

A few works Bartlett and Tewari (2009); Fruit et al. (2018); Zhang and Ji (2019) manage to
change D to sp(h∗) in their regret guarantees, but all these methods work with prior information
on the bias function, e.g., of the form “sp(h∗)≤ c”. Also, only SCAL Fruit et al. (2018) provides
a tractable way of using that prior information. The idea developed in this work is to make
sure, at every step of EVI (Algorithm II.3), that the ending vector un satisfies sp(un) ≤ c via
an operation that they call truncation, but that we will rather refer to as projection because it
corresponds to projecting un onto a convex set. Fruit et al. (2018) make clear that the projection
operation Γ must satisfy a few algebraic properties: monotony, non span-expansiveness and
linearity (see Proposition I.7). These properties guarantee that the result of the modified EVI
algorithm corresponds to an optimistic policy with optimistic bias span at most c. Directly
injecting into (II.8), this directly changes D(M) and improve the regret bound.

In his manuscript, Fruit (2019) provides an improved version of SCAL, SCAL*, together
with a precious intuition: What matters is not really to be optimistic about the value of policies,
but rather that EVI works with an optimistic Bellman operatorL . With PMEVI, we generalize
the projection operation of Fruit et al. (2018) and go further with the idea of optimistic Bellman
operators.



Chapter 7

Projected Mitigated Extended Value
Iteration (PMEVI)

In the previous chapter, we have argued that EVI (Algorithm II.3) and policy-wise optimism
lack something to achieve minimax optimal regret, because the design of the kernel confidence
region intrinsically produces an extra

p
S. With PMEVI, the sub-routine EVI is indeed improved

via a combination of two operations, but this goes even further. It is rather surprising that,
in opposition to this previous line of work, the theoretical analysis of PMEVI suggests that
the choice of the confidence regionMt has little importance. In fact, EVI takes an arbitrary
(well-behaved) confidence region in, infer bias information similarly to EBF Zhang and Ji (2019)
and makes use of it to heavily refine the extended Bellman operator (II.4) associated to the
input confidence region, and this confidence region can almost be arbitrary (provided that it is
correct) especially on kernels: PMEVI achieves minimax optimal regret guarantees even with
Pz(t) =P (S ). The algorithm PMEVI can further take arbitrary prior informationH∗ (possibly
none, i.e.,H∗ = RS ) on the bias vector to tighten its bias confidence region. The pseudo-code
given in Algorithm II.5 is the high level structure of the algorithm PMEVI-DT. In Section 7.1,
we explain how EVI is refined using bias information and in Section 7.1.1, we explain how bias
information is obtained.

Algorithm II.4 PMEVI-DT(H∗, T, t 7→Mt)
Parameters: Bias priorH∗, horizon T , a system of
confidence region t 7→Mt

1: for k = 1, 2, . . . do
2: Set tk← t, update confidence regionMt ;
3: H ′

t ← BiasEstimation(Ot ,Mt ,δ):
4: Ht ←H∗ ∩ {u : sp(u)≤ T 1/5} ∩H ′

t ;
5: Γt ← BiasProjection(Ht ,−);
6: βt ← VarianceApprox(H ′

t ,Ot);
7: hk← PMEVI(Mt ,βt , Γt ,

p

log(t)/t) ;
8: gk← Lthk − hk ;
9: Update policy πk← Greedy(Mt ,hk,βt);

10: repeat
11: Play At ← πk(St), observe Rt , St+1;
12: Increment t ← t + 1;
13: until (DT) Nt(St ,πk(St))≥ 1∨ 2Ntk

(Zt).
14: end for

Algorithm II.5 PMEVI(M ,β , Γ ,ε)
Parameters: regionM , mitigation β , projection Γ ,
precision ε, initial vector v0 (optional)
1: if v0 not initialized then set v0← 0;
2: n← 0
3: L ← extended operator associated toM ;
4: repeat
5: vn+ 1

2
←L β vn;

6: vn+1← Γ vn+ 1
2
;

7: n← n+ 1;
8: until sp(vn − vn−1)< ε
9: return vn.

75
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7.1 Projected mitigated extended value iteration (PMEVI)

Assume that an external mechanism provides a confidence regionHt for the bias function h∗.
Provided thatMt is correct (M ∈Mt) and thatHt is correct (h∗ ∈Ht), we want to find a pair
of policy-model (π, M̃) that maximize the gain and such that hπ(M̃) ∈Ht . This is done with an
improved version of (II.4) combining two ideas.

1. Projection (Section 7.1.1). Whenever it is correct, the bias confidence regionHt informs
the learner that the search of an optimistic model can be constrained to those with
bias within Ht . This is done by projecting L β

t (see mitigation) using an operator Γt :
RS →Ht , that has to satisfy a few non-trivial regularity conditions that are specified in
Proposition II.13.

2. Mitigation (Section 7.1.2). When one is aware that h∗ ∈Ht , the dynamical bias update
p̃(s, a)ui in (II.4) can be better controlled, by trying to restrict (II.4) to some p̃(s, a) such
that p̃(s, a)ui ≤ p̂t(s, a)ui + (p(s, a)− p̂t(s, a))ui with the knowledge that ui ∈Ht .

For a fixed u ∈ RS , the empirical Bernstein inequality (Lemma I.26) provides a vari-
ance bound of the form (p̂t(s, a) − p(s, a))u ≤ βt(s, a, u). By computing βt(s, a) :=
maxu∈Ht

βt(s, a, u), the search makes sure that (p̂t(s, a)−p(s, a))h∗ ≤ βt(s, a) even though
h∗ is unknown. For β ∈ RZ+ , we introduce the β-mitigated extended Bellman operator:

L β
t u(s) := max

a∈A (s)
sup

r̃(s,a)∈Rt (s,a)
sup

p̃(s,a)∈Pt (s,a)

¦

r̃(s, a) +min{p̃(s, a)ui, p̂t(s, a)ui + βt(s, a)}
©

(II.1)

The proposition below shows how well-behaved the composition Lt := Γt ◦L
β
t is. Its proof

requires to build a complete analysis of projected mitigated Bellman operators. This is deferred
to the appendix.

Proposition II.13. Fix β ∈ RZ+ and assume that there exists a projection operator Γt : RZ →
Ht which is (O1) monotone: u≤ v⇒ Γu≤ Γ v; (O2) non span-expansive: sp(Γu− Γ v)≤
sp(u − v); (O3) linear: Γ (u + λe) = Γu + λe and (O4) Γu ≤ u. Then, the projected
mitigated extended Bellman operator Lt := Γt ◦L

β
t has the following properties:

(1) There exists a unique gt ∈ Re such that ∃ht ∈Ht ,Ltht = ht + gt ;
(2) If M ∈Mt , h∗ ∈Ht and (p̂t(s, a)− p(s, a))h∗ ≤ βt(s, a), then gt ≥ g∗(M);
(3) IfMt is convex, then for all u ∈ RS , the policy π picking the actions achieving L β

t u
satisfies Ltu= r̃π + P̃πu for r̃π(s)≤ supRt(s,π(s)) and P̃π(s) ∈ Pt(s,π(s));

(4) For all u ∈ RS and n≥ 0, sp((Lt)n+1u− (Lt)nu)≤ sp((Lt)n+1u− (Lt)nu).

The property (1) guarantees that Lt has a fix-point while (2) states that this fix-point
corresponds to an optimistic gain gt if the model and the bias confidence region are correct
and the mitigation isn’t too aggressive. Combined with (3), the Poisson equation of a policy
corresponds to this fix-point, i.e., r̃π+ P̃πht = ht +gt , so that gt is the gain and ht ∈Ht is a legal
bias for π under the model (r̃π, P̃π). Lastly, the property (4) guarantees that the iterates Ln

t u
converge to a fix-point of L at least as quickly as L n

t u goes to a fix-point of Lt ; the convergence
of L n

t u is already guaranteed by existing studies and is discussed in the appendix.
Provided that the bias confidence region is constructed, Proposition II.13 foreshadows how

powerful is the construction: The algorithm PMEVI, obtained by iterating Lt instead of Lt in
EVI, can replace the well-known EVI within any algorithm of the literature that relies on it
(UCRL2 Auer et al. (2009), UCRL2B Fruit et al. (2020) or KL-UCRL Filippi et al. (2010)) for an
immediate improvement of its theoretical guarantees.
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7.1.1 Building the bias confidence region and its projection operator

The bias confidence region used by PMEVI-DT is obtained as a collection of constraints of the
form:

∀s ̸= s′, h(s)− h(s′)− c(s, s′)≤ d(s, s′). (II.2)

Such constraints include (1) prior bias constraints (if any) of the form of h(s)− h(s′)≤ c∗(s, s′);
(2) span constraints of the form h(s) − h(s′) ≤ c0 := T 1/5 spawning the span semi-ball {u :
sp(u)≤ T 1/5}; and (3) pair-wise constraints obtained by estimating bias differences in the style
of Zhang and Ji (2019); Zhang and Xie (2023) that we further improve. We start by defining a
bias difference estimator.

Definition II.5 (Bias difference estimator). Given a pair of states s ̸= s′, their sequence
of commute times (τs↔s′

i )i≥0 is defined by τs↔s′
2i := inf{t > τs↔s′

2i−1 : St = s} and τs↔s′
2i+1 :=

inf{t > τs↔s′
2i : St = s′}with the convention that τs↔s′

−1 = −∞. The number of commutations
up to time t is Nt(s↔ s′) := inf{i : τs↔s′

i ≤ t}, and ĝ(t) := 1
t

∑t−1
i=0 Ri is the empirical gain.

The bias difference estimator at time T is any quantity cT (s, s′) ∈ R such that:

Nt(s↔ s′)cT (s, s′) =
NT (s↔s′)−1
∑

t=0

(−1)i
τs↔s′

i+1 −1
∑

t=τs↔s′
i

( ĝ(T )− Rt). (II.3)

Lemma II.14. With probability 1 − 2δ, for all T ′ ≤ T and all g̃ ≥ g∗, the quantity
(∗) := NT ′(s↔ s′)|h∗(s)− h∗(s′)− cT ′(s, s′)| satisfies

(∗)≤ 3sp(h∗) + (1+ sp(h∗))
Ç

8T log( 2
δ ) + 2

T ′−1
∑

t=0

( g̃ − Rt). (II.4)

Lemma II.14 says that the quality of the estimator cT (s, s′) is directly linked to the number
of observed commutes between s and s′ as well as the regret. The idea is that if the algorithm
makes many commutes between s and s′ and if its regret is small, then the algorithm mostly takes
optimal paths from s to s′. The bound provided by Lemma II.14 is not accessible to the learner
however, because sp(h∗) is unknown in general. To overcome this issue, sp(h∗) is upper-bounded
by c0 := T 1/5. Overall, this leads to the design of the algorithm estimating the bias confidence
region as specified in Algorithm II.6.

Algorithm II.6 BiasEstimation(Ot ,Mt ,δ)
Parameters: History Ot , model regionMt , confi-
dence δ > 0
1: Estimate bias differences ct via (II.3);
2: Estimate optimistic gain g̃ ←mink<K(t) gk;

3: Inner regret estimation B0← t g̃ −
∑t−1

i=0 Ri;

4: ℓ←
q

8T log
�

2
δ

�

, c0← T
1
5 ;

5: Estimate the bias difference errors as:

dt(s, s′)≡ error(ct , s, s′) :=
3c0 + (1+ c0)(1+ ℓ) + 2B0

Nt(s↔ s′)

6: return (ct , error(ct ,−,−)), (II.2) definesH ′
t .

Algorithm II.7 BiasProjection(Ht , u)
Parameters: Ht a collection of linear constraints
(II.2), u ∈ RS to project
1: v← 0S ;
2: for s ∈ S do
3: Using linear programming, compute:
4: v(s)← sup{w(s) : w≤ u and w ∈Ht};
5: end for
6: return v.
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Coupled with prior information and span constraints, the obtained bias confidence region
Ht is a polyhedron of the same kind as the one encountered in Zhang and Xie (2023) generated
by constraints of the form (II.2), and similarly to their Proposition 3, one can project ontoHt
in polynomial time with Algorithm II.7. Moreover, the resulting projection operator satisfies
the prerequisites (O1-4) of Proposition II.13, making sure that PMEVI (Algorithm II.5) is well-
behaved. This is proved in the appendix Section 7.B.2.

Lemma II.15. Assume that H is a set of h ∈ RS satisfying a system of equations of the
form of (II.2). If H is non empty, then the operator Γu := BiasProjection(H , u)
(see Algorithm II.7) is a projection on H and satisfies the properties (O1-4) defined in
Proposition II.13.

7.1.2 Mitigation using finer bias dynamical error

The fact that h∗ ∈Ht with high probability is used in PMEVI-DT to restrict the search of EVI by
reducing the dynamical bias error. This reduction is based on a empirical Bernstein inequality
(see Lemma I.26) applied to (p̂(s, a)− p(s, a))u. Here, it gives that with probability 1−δ, we
have:

(p̂t(s, a)− p(s, a))u≤

√

√

√2V(p̂t(s, a), u) log
�

3T
δ

�

max{1, Nt(s, a)}
+

3sp(u) log
�

3T
δ

�

max{1, Nt(s, a)}
=: βt(s, a, u) (II.5)

where V(p̂t(s, a), u) is the variance of u under the probability vector p̂t(s, a). More specifically, if
q is a probability on S and q ∈ RS , we set V(q, u) :=

∑

s q(s)(u(s)− q · u)2. In (II.5), u ∈ RS ,
(s, a) ∈ Z and T ≥ 1 are fixed. One is tempted to use (II.5) directly to mitigate the extended
Bellman operator, but the resulting operator is ill-behaved because it looses monotony. This
issue is avoided by changing βt(s, a, u) to maxu∈Ht

βt(s, a, u) in (II.3). We obtain a variance
maximization problem, which is a convex maximization problem with linear constraints. Even
in very simple settings, such optimization problems are NP-hard Pardalos and Schnitger (1988)
hence computing maxu∈Ht

βt(s, a, u) is not reasonable in general. Thankfully, this value can
be upper-bounded by a tractable quantity that is enough to guarantee regret efficiency. The
mitigation βt used by PMEVI-DT is provided with Algorithm II.8.

Algorithm II.8 VarianceApproximation(H ′
t ,Ot)

Parameters: Bias regionH ′
t , history Ot

1: Extract constraints (c, error(c,−,−))←H ′
t ;

2: Set c0← T
1
5 ;

3: Pick a reference point h0← BiasProjection(Ht , c(−, s0));
4: for (s, a) ∈ Z do
5: ρ← log

�

SAT
δ

�

/max{1, Nt(s, a)};
6: var(s, a)← V(p̂t(s, a), h0) + 8c0

∑

s′∈S p̂t(s′|s, a)c(s′, s);
7: βt(s, a)←

p

2var(s, a)ρ + 3c0ρ or +∞ if Nt(s, a) = 0;
8: end for
9: return βt .
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7.2 Elements of regret analysis of PMEVI

7.2.1 Regret guarantees of PMEVI
Theorem II.16 below shows that PMEVI has minimax optimal regret under regularity assumptions
on the used confidence region Mt . Assumption 1 asserts that the confidence region holds
uniformly with high probability. Assumption 2 asserts that the reward confidence region is
sub-Weissman (see Lemma I.23) and Assumption 3 assumes that the model confidence region
makes sure that EVI (II.4) converges in the first place. Assumption 4 asserts that the prior bias
region is correct.

Assumption 1. With probability 1−δ, we have M ∈
⋂K(T )

k=1 Mtk
.

Assumption 2. There exists a constant C > 0 such that for all (s, a) ∈ S , for all t ≤ T, we have:

Rt(s, a) ⊆ {r̃(s, a) ∈ R(s, a) : Nt(s, a)∥r̂t(s, a)− r̃(s, a)∥2
1 ≤ C log

�

2SA(1+Nt (s,a))
δ

�

}.

Assumption 3. For t ≥ 0,Mt is a convex region in product form and L n
t u converges a fix-point.

Assumption 4. The prior bias regionH∗ contains h∗(M) and is generated by constraints of the
form:

∀s ̸= s′, h(s)− h(s′)≤ c∗(s, s′)

with c∗(s, s′) ∈ [−∞,∞] (possibly infinite).

Refer to Section 7.A.2 for the feasibility of Assumption 1, Section 7.A.2.3 for Assumption 2,
and Section 7.A.3 for Assumption 3.

Theorem II.16 (Main result). Let c > 0. Assume that PMEVI-DT runs with a confidence
region system t 7→Mt that guarantees Assumptions 1-3. If T ≥ c5, then for every weakly
communicating model with sp(h∗) ≤ c and such that Assumption 4 is satisfied (h∗ ∈H∗),
PMEVI-DT achieves regret:

O
�Ç

cSAT log
�

SAT
δ

�

�

+O
�

cS
5
2 A

3
2 T

9
20 log2

�

SAT
δ

�

�

with probability 1−26δ, and in expectation if δ <
p

1/T. Moreover, if PMEVI-DT runs with
the same confidence regions that UCRL2 Auer et al. (2009), then it enjoys a time complexity
O(DS3AT ).

To have a completely prior-less algorithm, pick H∗ = RS . The proof of Theorem II.16 is
tedious and is deferred to the appendix. We will focus here on the main ideas.

7.2.2 Main line of the regret analysis of PMEVI
We start by recalling a few notations. At episode k, the played policy is denoted πk. As
a greedy response to hk, by Proposition II.13 (3), there exists r̃k(s) ≤ supRtk

(s,πk(s)) and
P̃k(s) ∈ Ptk

(s,π(x)) such that hk + gk = r̃k + P̃khk. The reward-kernel pair M̃k = (r̃k, P̃k)
is referred to as the optimistic model of πk. We write Pk := Pπk

(M) the true kernel and
P̂k := Pπk

(M̂tk
) the empirical kernel. Likewise, we define the reward functions rk and r̂k. The

optimistic gain and bias satisfy gk = g(πk, eMk) and hk = h(πk, eMk). We further denote c0 = T
1
5 .

The regret is first decomposed episodically with Reg(T) =
∑

k

∑tk+1−1
t=tk

(g∗ − Rt). The first
step goes back to the analysis of UCRL2 Auer et al. (2009), and consists in upper-bounding the
regret over episode k with optimistic quantities that are exclusive to that episode.
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∑

k,t(p̂tk
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Reg(T )

O
�

c0S2A2T 1/4 log2(T )
�

Figure 7.1: An overview of PMEVI-DT and its regret analysis. In the above, gk and hk are the
optimistic gain and bias functions produced by PMEVI (see Algorithm 2) at episode k, and p̂tk

and p̃tk
are respectively the empirical and optimistic kernel models at episode k.

Lemma II.17 (Reward optimism). With probability 1− 6δ, we have:

Reg(T )≤
∑

k

tk+1−1
∑

t=tk

(gk − Rt)≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) +O
�Ç

SAT log
�

T
δ

�

�

. (II.6)

We introduce the optimistic regrets B(T ) :=
∑

k

∑tk+1−1
t=tk

(gk−Rt) and B̃(T ) :=
∑

k

∑tk+1−1
t=tk

(gk−
r̃k(Zt)). Rewriting the summand gk − r̃k(Zt) using the Poisson equation hk + gk = r̃k + P̃khk, we
get:

B̃(T ) =
∑

k

tk+1−1
∑

t=tk

�

p̃k(St)− eSt

�

hk.

The analysis proceed by decomposing the above expression of B̃(T ) in the style of Zhang and Ji
(2019). We write

∑tk+1−1
t=tk

(p̃k(St)− eSt
)hk as:

tk+1−1
∑

t=tk







�

pk(St)− eSt

�

hk
︸ ︷︷ ︸

navigation error (1k)

+(p̂k(St)− pk(St))h
∗

︸ ︷︷ ︸

empirical bias error (2k)

+(p̃k(St)− p̂k(St))hk
︸ ︷︷ ︸

optimistic overshoot (3k)

+(p̂k(St)− pk(St))(hk − h∗)
︸ ︷︷ ︸

second order error (4k)







Each error term is bounded separately. Below, we denote V(q, u) :=
∑

s q(s)(u(s)− q · u)2.

Lemma II.18 (Navigation error). With probability 1− 7δ, the navigation error is bounded by:

∑

k

tk+1−1
∑

t=tk

(pk(St)− eSt
)hk ≤

√

√

√

2
T−1
∑

t=0

V(p(Zt), h∗) log
�

T
δ

�

+ 2SA
1
2

Æ

3B(T ) log
�

T
δ

�

+ eO
�

T
7

20

�

.

Lemma II.19 (Empirical bias error). With probability 1−δ, the empirical bias error is bounded
by:

∑

k

tk+1−1
∑

t=tk

(p̂k(St)− pk(St))h
∗ ≤ 4

√

√

√

SA
T−1
∑

t=0

V(p(Zt), h∗) log
�

SAT
δ

�

+O
�

log2(T )
�

.
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Lemma II.20 (Optimism overshoot). With probability 1− 6δ, the optimism overshoot is bounded
by:

∑

k

tk+1−1
∑

t=tk

(p̃k(St)− p̂k(St))hk ≤

(

4
Ç

2SA
∑T−1

t=0 V(p(Zt), h∗) log
�

SAT
δ

�

+8(1+ c0)S
3
2 A log

3
2
�

SAT
δ

�p

B(T ) + eO
�

T
1
4

�

)

.

Lemma II.21 (Second order error). With probability 1−6δ, the second order error is bounded by:

∑

k

tk+1−1
∑

t=tk

(p̂k(St)− pk(St))(hk − h∗)≤ 16S2A(1+ c0) log
1
2

�

S2AT
δ

�Æ

2B(T ) + eO
�

T
1
4

�

.

We see that the empirical bias error (Lemma II.19) and the optimism overshoot (Lemma II.20)
both involve the sum of variances

∑T−1
t=0 V(p(Zt), h∗), which is shown in Lemma II.40 to be of

order sp(h∗)sp(r)T +
∑T−1

t=0 ∆
∗(Zt). The pseudo-regret term

∑T−1
t=0 ∆

∗(Zt) is bounded with the
regret using Corollary II.42, then by B(T ). With high probability, we obtain an equation of the
form:

B(T )≤ C
Ç

(1+ sp(h∗))SAT log
�

T
δ

�

+ CS2A(1+ c0) log2(T )
Æ

B(T ) + Õ
�

T
1
4

�

where C is a constant. Settingα := CS2A(1+c0) log2(T ) and β := C
p

(1+ sp(h∗))SAT log(T/δ)+
Õ(T 1/4), the above equation is of the form B(T) ≤ β + α

p

B(T ). Solving in B(T), we find
B(T )≤ β + 2

p

αβ +α2. The dominant term is β , hence we readily obtain:

B(T )≤ C
Ç

(1+ sp(h∗))sp(r)SAT log
�

T
δ

�

+ eO
�

sp(h∗)sp(r)S
5
2 A

3
2 (1+ c0)T

1
4

�

. (II.7)

Since c0 = o(T
1
4 ), we conclude that B(T ) = O

�p

sp(h∗)SAT log(T/δ)
�

, ending the proof.

Important remark. The result of Theorem II.16 is in probability. A result in expectation
could be obtained by setting a time-adaptive confidence level δ ≡ δ(t) := 1

t .

7.3 Experimental illustrations

To get a grasp of how PMEVI-DT behaves in practice, we provide in Figure 7.2 of few illustrative
experiments. In both experiments, the environment is a river-swim which is a model known to
be hard to learn despite its size, with high diameter and bias span. Its description is found in
Bourel et al. (2020) and is reported in the appendix for self-containedness.

We observe on the first experiment that PMEVI behaves almost identically to its EVI coun-
terparts when no prior on the bias region is given. This is because most of the regret is due to
the earlier learning phase, when bias information is impossible to get (the regret is still growing
linearly and the bias estimator is off). Accordingly, the bias confidence region is too large and
all projections onto it are trivial during the iterations of PMEVI. Thankfully, this also makes the
calls to PMEVI not substantially heavier than calls to EVI from a computational perspective. On
the second experiment, we measure the influence of prior bias information on the behavior of
PMEVI-DT. We observe that PMEVI-DT is very efficient at using adequate bias prior information
to strikingly reduce the burn-in cost of the learning process on this 3-state riverswim.

7.4 Future directions

Figure 7.2 is two-sided. On the one hand, the left-side experiments indicates that PMEVI does
not improve the regret in practice. I only had the time to get a superficial understanding of
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UCRL2B & PMEVI-UCR
L2B

UCRL2 & PMEVI-UCRL2

KLUCRL & PMEVI-KLUCRL

UCRL2

PMEVI(c=2)

PMEVI(
c=0.5)

PMEVI(c=
1)

Figure 7.2: (To the left) Running a few algorithms of the literature on 5-state river-swim
and comparing their average regret against their PMEVI variants, obtained by changing calls
to the EVI sub-routine to calls to PMEVI. (To the right) Running UCRL2 and PMEVI-DT with
the same confidence region that UCRL2 on a 3-state river-swim. PMEVI-DT is run with prior
knowledge h∗(s1)≤ h∗(s2)− c ≤ h∗(s3)− 2c for c ∈ {0, 0.5,1, 1.5,2}.

the phenomenon. On the left part of Figure 7.2, we indeed observe that there is hardly any
difference between the expected regret of EVI and PMEVI-based algorithms, while PMEVI have
better minimax regret guarantees. I don’t think that the lack of difference is completely explained
by the large second order term in the regret analysis (see Theorem II.16). Figure 7.2 displays
model-dependent regret curves because the regret is averaged over multiple run on the same
environment, while the regret analysis is minimax. To this end, Figure 7.2 should not be seen
as any attempt at validating or invalidating the theoretical results of Theorem II.16 and to some
extent, the two are perhaps incomparable. Figure 7.2 should be seen as experimental insights;
nothing less, nothing more.

One may argue that a model-dependent regret analysis of PMEVI would be more appropriate
– There I would like to put disclaimers. Regarding the lower bound of Part III, I believe that
policy-based optimism is not suited to reach model-dependent optimal regret, because any such
optimal algorithm should see exploration as a form of optimization problem under information
constraints. This optimization aspect is absent from EVI and PMEVI-based algorithms alike;
Such methods are suited to robust regret guarantees but not for asymptotically optimal regret
dependent guarantees. This being said, it is still possible to do a model-dependent analysis of
PMEVI-based algorithms. Auer et al. (2009); Filippi et al. (2010) provide O(log(T)) bounds
for their algorithms UCRL2 and KL-UCRL with an analysis that it is probably a good starter for
PMEVI-based methods. Such an analysis would only be asymptotic and would fail to address
the short-horizon concerns on the estimation of the bias that I have talked about. In fact,
in Part IV, we argue that both EVI and PMEVI-based algorithms have O(log(T) log log(T))
model dependent regret guarantees through a general argument. The analysis is too general
to distinguish between the specificities between EVI and PMEVI however. I conjecture that
PMEVI-based algorithms would improve on the bound of UCRL2 Auer et al. (2009) by changing
a few diameter dependent quantities to bias span dependent ones, although the diameter would
still be present as the switching cost induced by the logarithmic number of episodes.

This being said, PMEVI-based methods are tractable and can be analyzed experimentally. By
looking at when projection and mitigation operations trigger, it seems that the bias confidence
region is simply too large. I made my best to optimize Lemma II.14 by using as much data
from the history as possible, yet I did not try to optimize the numerical constants. Moreover, by
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taking into account the whole history of play, the bias estimator is therefore polluted by the early
learning data where the algorithm’s average quality of play is very poor. On the other hand, the
right-side experiments of Figure 7.2 indicate that with the adequate bias information, PMEVI
has much better performance than without. Hence, improving the bias estimation sub-routine is
crucial to make PMEVI superior to EVI in experiments.

Tuning PMEVI foreshadows a intensive experimental campaign on EVI and PMEVI. From
experiments I drove locally, it seems difficult to understand what makes h∗(Mt) and h∗(M)
are far away from each other. It seems pretty common for h∗(Mt), which is obtained without
the projection-mitigation correction, to be close to h∗(M) so that there is no point in using
PMEVI. However, such experiments would definitively driven by a model-dependent view which
is different from the model independent approach of the regret analysis that PMEVI has been
tuned for. Taking a bit of distance from optimistic methods might be necessary. As said above,
policy based optimism alone may not be able to reach the model dependent regret lower bound
of Part III. The question of whether optimism can be reformulated to address that issue is an
interesting research direction.



Appendix of Chapter 7

7.A Construction of PMEVI-DT
This section provides the technical details required to understand the design of PMEVI-DT in
Chapter 7. We further discuss the assumptions 1-4 appearing in Theorem II.16 and provide
sufficient conditions so that they are met.

7.A.1 Proof of Lemma II.14, estimation of the bias error

Fix s, s′ ∈ S . We denote αT := NT (s↔ s′)(h∗(s)−h∗(s′)− cT (s, s′)). We will start by considering
the better estimator c′T (s, s′) that satisfies the same equation (II.3) than cT (s, s′) but with ĝ(T )
changed to h∗, readily:

Nt(s↔ s′)c′T (s, s′) =
NT (s↔s′)−1
∑

t=0

(−1)i
τs↔s′

i+1 −1
∑

t=τs↔s′
i

(g∗ − Rt).

To avoid a typographical clutter, we write τi instead of τs↔s′
i in the remaining of the proof and

we write α′T := NT (s↔ s′)(h∗(s)− h∗(s′)− c′T (s, s′).
(STEP 1) We start by relating the two estimators. Intuitively, ĝ(T ) is a good estimator for g∗

when the regret is small. Recall that ĝ(T ) := 1
T

∑T−1
t=0 Rt , hence:

T−1
∑

t=0

| ĝ(T )− g∗|=

�

�

�

�

�

T−1
∑

t=0

(Rt − g∗)

�

�

�

�

�

= |Reg(T )|.

Therefore,

|αT | ≤
�

�α′T

�

�+
�

�αT −α′T
�

�≤
�

�α′T

�

�+
T−1
∑

t=0

| ĝ(T )− g∗| ≤
�

�α′T

�

�+ |Reg(T )|.

We are left with upper-bounding
�

�α′T

�

�.
(STEP 2) If i is even, then Sτi

and §τi+1
= s′; otherwise Sτi

= s′ and Sτi+1
= s. In both cases,

we have h∗(Sτi+1
)− h∗(Sτi

) = (−1)i(h∗(s′)− h∗(s)). Therefore, using Bellman’s equation, the

quantity A :=
∑τi+1−1

t=τi
(g∗ − Rt) satisfies:

A=
τi+1−1
∑

t=τi

�

p(Zt)− eSt

�

h∗ +
τi+1−1
∑

t=τi

(r(Zt)− Rt) +
τi+1−1
∑

t=τi

∆∗(Zt)

=
τi+1−1
∑

t=τi

�

eSt+1
− eSt

�

h∗ +
τi+1−1
∑

t=τi

�

p(Zt)− eSt+1

�

h∗ +
τi+1−1
∑

t=τi

(r(Zt)− Rt) +
τi+1−1
∑

t=τi

∆∗(Zt)
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= (−1)i(h∗(s′)− h∗(s)) +
τi+1−1
∑

t=τi

�

p(Zt)− eSt+1

�

h∗ +
τi+1−1
∑

t=τi

(r(Zt)− Rt) +
τi+1−1
∑

t=τi

∆∗(Zt).

Multiplying by (−1)i and rearranging, h∗(s′)− h∗(s) + (−1)i+1
∑τi+1−1

t=τi
(g∗ − Rt) appears to be

equal to:

(−1)i+1

�τi+1−1
∑

t=τi

��

p(Zt)− eSt+1

�

h∗ + r(Zt)− Rt

�

+
τi+1−1
∑

t=τi

∆∗(Zt)

�

.

Proceed by summing over i. By triangular inequality, we obtain:

�

�α′T

�

�≤

�

�

�

�

�

NT (s↔s′)−1
∑

i=0

τi+1−1
∑

t=τi

(−1)i+1
��

p(Zt)− eSt+1

�

h∗ + r(Zt)− Rt

�

�

�

�

�

�

+
NT (s↔s′)−1
∑

i=0

τi+1−1
∑

t=τi

∆∗(Zt).

Because all Bellman gaps∆∗ are non-negative, the second term is upper-bounded by the pseudo-
regret

∑T−1
t=0 ∆

∗(Zt). The first term is a martingale, and the martingale difference sequence
(−1)i+1((p(Zt)− eSt+1

)h∗ + r(Zt)− Rt has span at most sp(h∗) + 1 since rewards are supported
in [0, 1]. Although the number of involved is random, it is upper-bounded by T , hence by the
maximal version of Azuma-Hoeffding’s inequality (Lemma I.19), we have that with probability
at least 1−δ, uniformly for T ′ ≤ T ,

�

�

�

�

�

NT ′ (s↔s′)−1
∑

i=0

τi+1−1
∑

t=τi

(−1)i+1
��

p(Zt)− eSt+1

�

h∗ + r(Zt)− Rt

�

�

�

�

�

�

≤ (1+ sp(h∗))
Ç

1
2 T log

�

2
δ

�

.

(STEP 3) We conclude that with probability 1−δ, for all T ′ ≤ T ,

αT ′ ≤ (1+ sp(h∗))
Ç

1
2 T log

�

2
δ

�

+
T ′−1
∑

t=0

∆∗(Zt) +
�

�Reg(T ′)
�

�.

We are left with relating both
∑T ′−1

t=0 ∆
∗(Zt) and |Reg(T ′)| to

∑T ′−1
t=0 ( g̃ − Rt). Using the Bellman

equation again, we find that:
�

�

�

�

�

T ′−1
∑

t=0

(g∗ − Rt −∆∗(Zt))

�

�

�

�

�

≤ |h∗(S0)− h∗(ST ′)|+

�

�

�

�

�

T ′−1
∑

t=0

��

p(Zt)− eSt+1

�

h∗ + (r(Zt)− Rt)
�

�

�

�

�

�

≤ sp(h∗) + (1+ sp(h∗))
Ç

1
2 T log

�

2
δ

�

where the last inequality holds with probability 1−δ uniformly over T ′ ≤ T by Azuma-Hoeffding’s
inequality again (Lemma I.19). Remark that if y − z ≤ x ≤ y + z, then |x | ≤ |y|+ |z|, hence we
conclude that with probability 1−δ, for all T ′ ≤ T :

T ′−1
∑

t=0

∆∗(Zt) +
�

�Reg(T ′)
�

�≤ 2
T ′−1
∑

t=0

∆∗(Zt) + (1+ sp(h∗))
Ç

1
2 T log

�

2
δ

�

+ sp(h∗)

≤ 2
T ′−1
∑

t=0

(g∗ − Rt) + 3(1+ sp(h∗))
Ç

1
2 T log

�

2
δ

�

+ 3sp(h∗)

≤ 2
T ′−1
∑

t=0

( g̃ − Rt) + 3(1+ sp(h∗))
Ç

1
2 T log

�

2
δ

�

+ 3sp(h∗)

where the last inequality invokes g̃ ≥ g∗. We conclude that, with probability 1− 2δ, for all
T ′ ≤ T , we have:

NT ′(s↔ s′)(h∗(s)− h∗(s′)− cT ′(s, s′))≤ 3sp(h∗) + (1+ sp(h∗))
Ç

8T log
�

2
δ

�

+
T ′−1
∑

t=0

( g̃ − Rt).

This concludes the proof.
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7.A.2 The confidence region of PMEVI-DT

The algorithm PMEVI-DT can be instantiated with a large panel of possibilities, depending on
the type of confidence region one is willing to use for rewards and kernels. In this work, we
allow for four types of confidence regions, described below. For conciseness, q ∈ {r, p} is a
symbolic letter that can be a reward or a kernel and denote Qt(s, a) the confidence region for
q(s, a) at time t. If q = r, then dim(q) = 2 (Bernoulli rewards) with Q(s, a) = [0,1]; and if
q = p, then dim(q) = S with Q(s, a) =P (S ).

(C1) Azuma-Hoeffding or Weissman type confidence regions, with Qt(s, a) taken as:

¦

q̃(s, a) ∈Q(s, a) : Nt(s, a)∥q̂t(s, a)− q̃(s, a)∥2
1 ≤ dim(q) log

�

2SA(1+Nt (s,a))
δ

�©

.

(C2) Empirical Bernstein type confidence regions, with Qt(s, a) taken as:











q̃(s, a) ∈Q(s, a) : ∀i, |q̂t(i|s, a)− q̃(i|s, a)| ≤

√

√

√2V(q̂t (i|s,a)) log
�

2 dim(q)SAT
δ

�

Nt (s,a)
+

3 log
�

2dim(q)SAT
δ

�

Nt (s,a)











.

with the convention that x/0= +∞ for x > 0.

(C3) Empirical likelihood type confidence regions, with Qt(s, a) taken as:

¦

q̃(s, a) ∈Q(s, a) : Nt(s, a)KL(q̂t(s, a)∥q̃(s, a))≤ log
�

2SA
δ

�

+ (dim(q)− 1) log
�

e
�

1+ Nt (s,a)
dim q−1

��©

.

(C4) Trivial confidence region with Qt(s, a) =Q(s, a).

A few remarks are in order. When rewards are not Bernoulli, only the confidence regions
(C1) and (C4) are elligible among the above. Then, Weissman’s inequality must be changed to
Azuma’s inequality for σ-sub-Gaussian random variables, see Lemma I.22. Since rewards are
supported in [0, 1], Hoeffding’s Lemma guarantees that reward distributions are σ-sub-Gaussian
with σ = 1

2 .

7.A.2.1 Correctness of the model confidence regionMt and Assumption 1

The confidence regions Qt(s, a) described with (C1-4) are tuned so that the following result
holds:

Lemma II.22. Assume that, for all q ∈ {r, p} and (s, a) ∈ Z , we choose Qt(s, a) among (C1-4).
Then Assumption 1 holds. More specifically, the region of modelsMt :=

∏

s,a(Rt(s, a)×Pt(s, a))
satisfies P(∃t ≤ T : M /∈Mt)≤ δ.

Proof. We show that, for all q ∈ {r, q} and (s, a) ∈ Z , if Qt(s, a) is chosen amoung (C1-4), then

P(∃t ≤ T : q(s, a) /∈Qt(s, a))≤ δ.

If Qt(s, a) is chosen with (C1), this is a direct application of Lemma I.23; with (C2), this is
Lemma I.24; with (C3), this is Lemma I.25; and with (C4) this is by definition.
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7.A.2.2 Simultaneous correctness of bias confidence region Ht , mitigation βt and opti-
mism

In this section, we show that if Assumption 1 holds, then the bias confidence region constructed
by PMEVI-DT is correct with high probability, and that the mitigation is not too strong. Recall
that (gk,hk) are the optimistic gain and bias of the policy deployed in episode k (see Algorithm 1).
In particular, we have gk = Ltk

hk − hk with hk ∈Htk
. We start by a result on the deviation of the

variance, which is what the variance approximation Algorithm 5 is based on. Recall that the
bias confidence regionHt is obtained as the collection of constraints:

(1) prior constraints (if any) h(s)− h(s′)≤ c∗(s, s′);

(2) span constraints h(s)− h(s′)≤ c0 := T 1/5;

(3) dynamically infered constraints |h(s)− h(s′)− ct(s′, s)| ≤ error(ct , s′, s) (see Algorithm 3).

We have the following result.

Lemma II.23. Let u, v ∈Ht and fix p a probability distribution on S . Then for all s ∈ S ,

V(p, u)≤ V(p, v) + 8c0

∑

s′∈S

p(s′) error(ct , s′, s).

Proof. We start by establishing the following result: If p is a probability distribution on S and
u, v ∈ RS , we have:

V(p, u)≤ V(p, v) + 2(p · |u− v|)max(u+ v) (II.8)

where · is the dot product, u2 the Hadamard product uu and |u| the vector whose entry s is |u(s)|.
(II.8) is obtained with a straight forward computation:

V(p, u)−V(p, v) = p · (u2 − v2) + (p · v)2 − (p · u)2

= p · ((u− v)(u+ v)) + (p · (u− v))(p · (u+ v))
≤ p · (|u− v|(u+ v)) + (p · |u− v|)(p · |u+ v|)
≤ 2(p · |u− v|)max(u+ v).

Observe that v can be changed to v+λe, where e is the vector full of ones, without changing the
result. The same goes for u. We now move to the proof of the main statement. First, translate u
and v such that u(s) = v(s) = 0. Then, we have:

p · (u− v) =
∑

s′∈S

p(s′)
�

�u(s′)− u(s)− ct(s
′, s) + v(s)− v(s′) + ct(s

′, s)
�

�

≤
∑

s′∈S

p(s′)
��

�u(s′)− u(s)− ct(s
′, s)

�

�+
�

�v(s′)− v(s)− ct(s
′, s)

�

�

�

≤ 2
∑

s′∈S

p(s′) error(ct , s′, s).

Conclude using that max(u+ v)≤max(u) +max(v) + 2c0 for u, v ∈H such that u(s) = v(s) =
0.

Lemma II.24. Assume that Assumption 1 holds and that c0 ≥ sp(h∗). Then, with probability 1−4δ,
for all k ≤ K(T), (1) gk ≥ g∗ and (2) h∗ ∈ Htk

and (3) for all (s, a), (p̂tk
(s, a)− p(s, a))h∗ ≤

βtk
(s, a).
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Proof. Let E1 the event (∀k ≤ K(T ), M ∈Mtk
). Let E2 the event stating that, for all T ′ ≤ T ,

NT ′(s↔ s′)
�

�h∗(s)− h∗(s′)− cT ′(s, s′)
�

�≤ 3sp(h∗) + (1+ sp(h∗))
Ç

8T log( 2
δ ) + 2

T ′−1
∑

t=0

( g̃ − Rt),

and let E3 the event stating that, for all T ′ ≤ T and for all (s, a) ∈ Z , we have:

(p̂T ′(s, a)− p(s, a))h∗ ≤
s

2V(p̂T ′ (s,a),h
∗) log( SAT

δ )
NT ′ (s,a)

+
3sp(h∗) log( SAT

δ )
NT ′ (s,a)

.

By Lemma II.14, we have P(E2) ≥ 1− 2δ and by Lemma I.24, we have P(E3) ≥ 1− δ, so
P(E1 ∩ E2 ∩ E3)≥ 1− 4δ. We prove by induction on k ≤ K(T ) that, on E1 ∩ E2, (1) gk ≥ g∗, (2)
h∗ ∈Htk

(3) and for all (s, a), (p̂tk
(s, a)− p(s, a))h∗ ≤ βtk

(s, a), where gk is the optimistic gain
of the policy deployed at episode k. For k = 0, this is obvious. Indeed, N0(s↔ s′) = 0 for all
s, s′ hence c0(s, s′) = c0 ≥ sp(h∗). Therefore,

H0 ⊇
�

h ∈ RS : sp(h)≤ c0

	

⊇
�

h ∈ RS : sp(h)≤ sp(h∗)
	

so contains h∗, proving (2). Moreover, since N0(s, a) = 0, we have β0(s, a) = +∞, proving (3).
Finally, since M ∈M0 on E1, by the statement (2) of Proposition II.13, we have gk ≥ g∗, hence
proving (1).

Now assume that k ≥ 1. By induction gℓ ≥ g∗ for all ℓ < k, so on E2 we have:

Ntk
(s↔ s′)

�

�h∗(s)− h∗(s′)− ctk
(s, s′)

�

�≤ 3sp(h∗)+ (1+ sp(h∗))
Ç

8T log( 2
δ )+2

k−1
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gℓ−Rt).

By design ofHtk
(see Algorithm 3), we deduce that (2) h∗ ∈Htk

. Denote h0 ∈Htk
the reference

point used by Algorithm 5. We have, for all (s, a) ∈ Z , on E1 ∩ E2 ∩ E3, we have:

�

p̂tk
(s, a)− p(s, a)

�

h∗ ≤
s

2V(p̂tk
(s,a),h∗) log( SAT

δ )
Ntk
(s,a) +

3sp(h∗) log( SAT
δ )

Ntk
(s,a)

(h∗ ∈Htk
+ Lemma II.23)≤

√

√

2
�

V(p̂tk
(s,a),h0) log( SAT

δ )+8c0

∑

s′∈S p̂tk
(s′|s,a) error(ctk

,s′,s)
�

log( SAT
δ )

Ntk
(s,a) +

3c0 log( SAT
δ )

Ntk
(s,a)

=: βtk
(s, a)

by construction of Algorithm 5. Accordingly, (3) is satisfied. Finally, M ∈ Mtk
on E1 so by

Proposition II.13, we have (1) gk ≥ g∗.

Corollary II.25. Assume that, for all q ∈ {r, p} and (s, a) ∈ Z , we choose Qt(s, a) among (C1-4).
Then, with probability 1− 3δ, for all k ∈ K(T ), we have gk ≥ g∗ and (2) h∗ ∈Htk

and (3) for all
(s, a), (p̂tk

(s, a)− p(s, a))h∗ ≤ βtk
(s, a).

Proof. By Lemma II.22, Assumption 1 is satisfied. Apply Lemma II.24.

7.A.2.3 Sub-Weissman reward confidence region and Assumption 2

Although the kernel confidence region can even chosen to be trivial with (C4), in order to work,
PMEVI-DT needs the reward confidence region to be sub-Weissman in the following sense:

Assumption 2. There exists a constant C > 0 such that for all (s, a) ∈ S , for all t ≤ T , we
have:

Rt(s, a) ⊆
¦

r̃(s, a) ∈ R(s, a) : Nt(s, a)∥r̂t(s, a)− r̃(s, a)∥2
1 ≤ C log

�

2SA(1+Nt (s,a))
δ

�©

.

This is indeed the case if Rt(s, a) is chosen among (C1-3).
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7.A.3 Convergence of EVI and Assumption 3

We start with a preliminary lemma on the speed of convergence of EVI. The Lemma II.26 is
thought to be applied to extended MDPs. Below, when we claim that the action space is compact,
we further claim that a ∈A (s) 7→ p(s, a) is a continuous map, so that the Bellman operator is
continuous and that g∗ and h∗ are well-defined, see Puterman (1994).

Lemma II.26. Let M a weakly-communicating MDP with finite state space RS and compact action
space, and let L its Bellman operator. Assume that there exists γ > 0 such that, ∀u ∈ RS ,

∀s ∈ S ,∃a ∈A (s), Lu(s) = r(s, a) + p(s, a)u= r(s, a) + γmax(u) + (1− γ)qu
s u (∗)

with qu
s ∈ P (S ). Then, for all u ∈ RS and all ε > 0, if sp(Ln+1u− Lnu)≥ ε, then:

n≤ 2+
4sp(w0)
γε

+
2
γ

log
�

2sp(w0)
ε

�

.

Proof. Since M is weakly communicating, has finitely many states and compact action space, it
has well-defined gain g∗ and bias h∗ functions. Denote un+1 := Lnu.

wn :=max
π∈Π
{rπ + Pπun−1} − ng∗ − h∗

=max
π∈Π
{rπ − g∗ + (Pπ − I)h∗ + Pπ(un−1 − h∗ − (n− 1)g∗)}=: max

π∈Π

�

r ′π + Pπwn−1

	

.

Observe that the policy achieving the maximum is the one achieving un = rπ + Pπun−1. Remark
that r ′π(s) = −∆

∗(s,π(s))≤ 0 is the Bellman gap of the pair (s,π(s)), that we more simply write
∆π. For all n, there exists πn ∈ Π such that wn+1 = −∆πn

+ Pπn
wn. Moreover, by assumption,

we have Pπn
= γ · e⊤sn

e+ (1− γ)Qn where Qn is a stochastic matrix. Moreover,

�

min(−∆πn
) + γwn(sn)

�

e+ (1− γ)Qnwn ≤ wn+1 ≤
�

max(−∆πn
) + γwn(sn)

�

e+ (1− γ)Qnwn.

Hence, sp(wn+1) ≤ (1 − γ)sp(wn) + sp(∆πn
). In addition, wn = Lnu − Lnh∗, so by non-

expansiveness of L in span semi-norm, sp(wn+1)≤ sp(wn). Overall,

sp(wn+1)≤min
�

(1− γ)sp(wn) + sp(∆πn
), sp(wn)

�

. (II.9)

Fix ε > 0, and let nε := inf{n : sp(wn)< ε}.
Letπ∗ an optimal policy. We have wn+1 ≥ Pπ∗wn so by induction, wn+1 ≥ Pn+1

π∗ w0 ≥min(w0)e.
Meanwhile, we see that ∥wn∥1 ≥

∑n−1
k=0



∆πk





1
+ S min(w0), so

∑n−1
k=0



∆πk





1
≤ sp(w0). Since

∆πk
≤ 0 for all k, we have sp(∆πk

)≤


∆πk





1
so
∑n−1

k=0 sp(∆πk
)≤ sp(w0).

By (II.9), either sp(wn+1)≤ (1−
1
2γ)max(ε, sp(wn)) or sp(∆πn

)≥ 1
2γε, but because

∑+∞
k=0 sp(∆πk

)≤
sp(w0), the second case can happen at most 2sp(w0)

γε times. We deduce that, for all n≤ nε,

sp(wn+1)≤
�

1− 1
2γ
�n− 2sp(w0)

γε sp(w0).

In particular, for n= nε − 1, we get:

ε≤
�

1− 1
2γ
�nε−2− 2sp(w0)

γε sp(w0).

We obtain:

nε ≤ 2+
2sp(w0)
γε

+
2
γ

log
�

sp(w0)
ε

�

.

To conclude, check that sp(Ln+1u− Lnu) = sp(wn+1 −wn)≤ 2sp(wn).
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Before moving to the application of interest, remark that this result can be greatly improved
if the supremum sup{∆∗(s, a) :∆∗(s, a)< 0} is not zero, to change the dominant term 4sp(w0)

γε

for a constant independent of ε.

Corollary II.27. Assume that the Mt has non-empty interior, and that its Bellman operator
satisfies the requirement of Lemma II.26, i.e., there exists γ > 0 such that, ∀u ∈ RS ,∀s ∈ S ,∃a ∈
A (s),∃r̃t(s, a) ∈ Rt(s, a),∃p̃t(s, a) ∈ Pt(s, a):

Ltu(s) = r̃t(s, a) + p̃t(s, a)u= r̃t(s, a) + γmax(u) + (1− γ)qu
s u

for some qu
s ∈ P (S ). Then Assumption 3 is satisfied, and span fix-points h̃t of Lt are such that

g∗(Mt) =Lt h̃t − h̃t .

Proof. If Mt is has non-empty interior, it means that for all (s, a), Pt(s, a) has non-empty
interior. Therefore, for all state-action pair, there exists p̃t(s, a) ∈ Pt(s, a) that is fully supported.
It follows thatMt is communicating, and it follows from standard results Puterman (1994) that
its span fix-points h̃ do exist and that g̃t :=L h̃t − h̃t ∈ Re does not depend on the initial state.

Moreover, if eM ∈ Mt and π ∈ Π with g̃π ≡ g(π,Mt) ∈ Re, letting r̃π := rπ(M̃) and
P̃π := Pπ(M̃), we have:

r̃π + p̃πh̃t ≤Lt h̃t ≤ g̃t e+ h̃t .

So by induction and since Lt is obviously monotone and linear, we show that:

n
∑

k=0

P̃k
π r̃π ≤ ng̃t e+ (I − P̃n

π)h̃π.

Dividing by n and letting it go to infinity, we obtain g(π,Mt) ≤ g̃t . Observe that we have
equility by taking the policy achieving ( g̃t , h̃t).

To see that EVI converges indeed, simply observe that Lemma II.26 provides a finite bound
on how much time is required until the sp(L n+1

t u−L n
t u)≤ ε. Hence sp(L n+1

t u−L n
t u) vanishes

to 0.

About Assumption 3. The assumptions made by Corollary II.27 are met if the kernel confidence
regions are:

• Built out of Weissman’s inequality (C1) (see the next section, also Auer et al. (2009));

• Built out of Bernstein’s inequality (C2) (because the maximization algorithm to compute
p̃t(s, a)ui in EVI has the same greedy properties than with Weissman’s inequality);

• Trivial (C4) obviously.

For confidence regions build with empirical likelihood estimates (C3), there is no guarantee
of convergence (although we conjecture that one could be established), although the gain is
still well-defined becauseMt remains communicating. However, just like the original work of
Filippi et al. (2010), the convergence is always met numerically.

7.A.4 Proof of Theorem II.16: Complexity of PMEVI with Weissman confi-
dence regions

In this section, we show that when one is using Weissman confidence regions for kernels (C1),
then the iterates of Lt converge to an ε span-fix-point quickly.
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Proposition II.28. Assume that PMEVI-DT uses kernel confidence regions of Weissman type (C1)
satisfying Assumption 1. Then with probability 1 − δ, the number of iterations of PMEVI (see
Algorithm 2) is O

�

D
p

SAT
�

, hence the algorithm has polynomial per-step amortized complexity.

Proof. With Weissman type confidence regions for kernels, for all t ≤ T and (s, a) ∈ Z , we have

Pt(s, a) ⊇

¨

p̃(s, a) ∈ P (s, a) : ∥p̃(s, a)− p̂t(s, a)∥1 ≤

√

√S log(2SAT )
T

«

It follows that, for all t ≤ T , the extended Bellman operator Lt satisfies the prerequisite (∗) of
Lemma II.26 with

γ=
1
2

√

√S log(2SAT/δ)
T

= Ω

�√

√S log(T/δ)
T

�

.

Under Assumption 1, we have M ∈Mt with probability 1−δ. Under this event,Mt is weakly
communicating and sp(h∗(Mt))≤ D(M), we can apply Lemma II.26 and conclude that every
calls to PMEVI (Algorithm 2) takes

O





sp(w0)
p

T

ε
Ç

S log(T/δ)
T



= O

�

DT
p

S log(T )

�

where we use that ε =
Ç

log(SAT/δ)
T , that sp(w0) = O(sp(h∗(Mt))) = O(D(M)) and that δ ≥ 1

T .
Since the number of episodes under the doubling trick (DT) is O(SA log(T)), we conclude
accordingly.

Every call to the projection operator solves a linear program. Although in theory, this time is
polynomial (relying on recent work on the complexity of LP such as Cohen et al. (2020), it is
the current matrix multiplication time O(S2.38)), in practice, reducing the number of calls to the
projection operator is key to run PMEVI-DT in reasonable time.

7.B Analysis of the projected mitigated Bellman operator

In this section, we fix the model region M , the bias region H and the mitigation vector β ,
dropping the sub-script t for conciseness. We denote r̂, p̂ the respective empirical reward and
kernel. Further assume that H = H0 + Re with H0 a compact convex set. The associated
projection operation (see Section 7.B.2) is denoted Γ . The (vanilla) extended Bellman operatorL
associated toM is given by L u(s) :=maxa∈A (s){supR(s, a) + supP (s, a)u}. The β-mitigated
extended Bellman operator associated toM is:

L βu(s) := max
a∈A (s)

sup
r̃(s,a)∈R(s,a)

sup
p̃(s,a)∈P (s,a)

¦

r̃(s, a) +min{p̃(s, a)ui, p̂(s, a)ui + β(s, a)}
©

. (II.10)

The function Greedy(M , u,β) returns a stationary deterministic policy that picks its actions
among the one reaching the maximum above. The projection of L β toH is

L≡ Lβ ,H := Γ ◦L β . (II.11)

The goal of this section is to establish Proposition II.13 and

• Proposition II.13 statement (1) is a consequence of Lemma II.33;

• Proposition II.13 statement (2) follows from Theorem II.36;
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• Proposition II.13 statement (3) follows from Corollary II.38;

• Proposition II.13 statement (4) follows from Corollary II.32;

• Proposition II.13 prerequisites on the projection operator and Lemma II.15 follows from
Lemma II.30

7.B.1 Finding an optimistic policy under bias constraints

The main goal is to find and optimistic policy under bias constraints (projection) and bias error
constraints (mitigation). The bias constraints imply that we search for a policy π together with
a model eM such that h(π, eM) ∈ H . The bias error means that, for h̃ ≡ h(π, eM), we want in
addition p̃(s,π(s))h̃≤ p̂(s,π(s))h̃+ β(s,π(s)) where p̃ is the transition kernel of eM . In the end,
our goal is to track the solution of the following optimization problem:

g∗(H ,β ,M ) := sup







g
�

π, eM
�

:
π ∈ Π, eM ∈M ,

∀s ∈ S , p̃(s,π(s))h̃≤ p̂(s,π(s))h̃+ β(s,π(s)),
h̃≡ h(π, eM) ∈H , sp(g

�

π, eM
�

) = 0







(II.12)

where the supremum is taken with respect to the product order RS . In particular, if U ⊆RS ,
check that u∗ = supU is obtained as u∗(s) := sup{v(s) : v ∈ U }. The constraint sp(g

�

π, eM
�

) = 0
is suggested by the work of Fruit (2019); Fruit et al. (2018) and is key for the problem to be
solvable.

The bias and the β-constraints make the problem to handle with a “pure” extended MDP
solution, which is why the extended Bellman operators are mitigated (with β) then projected
(with Γ ). The mitigation operation guarantees that the β-constraint is satisfied, while the
projection on H makes sure that the bias constraint is satisfied. It is important for both
operations to be compatible, i.e., that the β -constraint that L β forces is not lost when applying
Γ . As a matter of fact, projecting then mitigating would not work.

We now explain why L can be used to solve (II.12).

7.B.2 Projection operation and definition of L

We start by discussing why L is well-defined at all. The well-definition of L β is obvious. The
point is to explain why the projection ontoH is possible while preserving mandatory structural
properties such as monotony, non-expansivity, linearity and more. For generalH , such properties
are impossible to meet. But the bias confidence region constructed with Algorithm 3 has a
specific shape that makes the projection possible. The central property is the one below:

(A1) The downward closure {v ≤ u : v ∈H } of every u ∈ RS has a maximum inH .
The only order that we will be considering is the product order on RS . Recall that a set

U ⊆ RS has a maximum if there exists u ∈ U such that v ≤ u for all u ∈ U . A supremum of U
is a minimal upper-bound of U , i.e., u such that (1) v ≤ u for all v ∈ U and (2) no w satisfying
(1) can be smaller than u. For the product order, the supremum of a subset U is unique and of
the form u(s) = sup{v(s) : v ∈ U }.

Define the projection Γ : RS →H as such:

Γu :=max{v ≤ u : v ∈H }. (II.13)

In general, Assumption (A1) is satisfied whenH admits a join, i.e., is stable by finite supremum:
u, v ∈H ⇒ sup(u, v) ∈H .

Lemma II.29. IfH is generated by constraints of the form h(s)− h(s′)− c(s, s′)≤ d(s, s′), then it
has a join and (A1) is satisfied. Moreover, Γ is then correctly computed with Algorithm 4.
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Proof. The first half of the result is well-known, see Zhang and Xie (2023), but we recall
a proof for self-containedness. Let v1, v2 ∈ H and define v3 := sup(v1, v2). Observe that
v3(s)− v3(s′)≤max(v1(s)− v1(s′), v2(s)− v2(s′))≤ c(s, s′) + d(s, s′). So v3 ∈H .

We continue by showing that if H has a join, then (II.13) is well-defined. For s ∈ S ,
take a sequence vs

n such that vs
n(s) → α(s) := sup{v(s) : v ≤ u, v ∈H }. Because the span of

every element of H is upper-bounded by c := sup{sp(v) : v ∈H }, it follows that vs
n evolves

in the compact region {v ≤ u : v ∈H } ∩ {v : ∥v −αse∥∞ = 1+ c}. We can therefore extract
a convergent sequence of vs

n, converging vs
∗ that belongs to H since the latter is closed. By

construction, vs
∗(s) = α(s). BecauseH has a join, v∗ := sup

�

vs
∗ : s ∈ S

	

∈H .

Lemma II.30. Under assumption (A1), the operator Γu :=max{v ≤ u : v ∈H } is well-defined,
and is:

(1) monotone: u≤ v⇒ Γu≤ Γ v;
(2) non span-expansive: sp(Γu− Γ v)≤ sp(u− v);
(3) linear: Γ (u+λe) = Γu+λe;
(4) Γu≤ u.

Proof. The well-definition of Γ is obvious from (A1). For (2), if u ≤ v then w ≤ u ⇒ w ≤ v.
Hence Γu :=max{w≤ u : w ∈H } ≤max{w≤ v : w ∈H }=: Γ v. For (3), check that it follows
fromH =H +Re. For (4), we obviously have Γu :=max{v ≤ u : v ∈H } ≤ u.

The more difficult point is (2) span non-expansivity. Pick u, v ∈ RS . By linearity, it suffices to
show the result for

∑

s u(s) =
∑

s v(s). In that case, we have sp(v−u) =max(v−u)+max(u− v).
Observe that for all w≤ u, we have w+min(v − u)e ≤ v. SinceH =H +Re, it follows that:

max{w≤ u : u ∈H } ≤max{w≤ v : w ∈H }+max(u− v)e.

Similarly, we have max{w≤ u : w ∈H } ≥max{w≤ v : w ∈H }+min(v−u)e. Using them both
at once, we find sp(Γu− Γ v)≤ sp(v − u).

The properties (1), (3) and (4) are essential for L to properly address the optimization
problem (II.12). The property (2) is just as important, because it plays a central part in the
convergence of value iteration. The next result shows similar properties for the β-mitigated
extended Bellman operator L β . From now on, we will assume (A1), because it is almost-surely
satisfied by the bias confidence region generated by Algorithm 3.

Lemma II.31. The β-mitigated extended Bellman operator L β is (1) monotone, (2) non-span-
expansive and (3) linear.

Proof. The properties (1) and (3) directly follow from the definition. We focus on (2). Fix
u, u′ ∈ RS . By Lemma II.37, we can write L βu = r̃π + P̃πu and L βu′ = r̃π′ + P̃π′u

′. In the
following, we write βπ(s) := β(s,π(s)). Check that:

L βu−L βu′ = r̃π + P̃πu−
�

r̃π′ + P̃π′u
′�≤ r̃π + P̃πu−

�

r̃π +min
�

P̃πu′, P̂πu′ + βπ
	�

.

If the minimum is reached with P̃πu′, then:

L βu−L βu′ ≤ P̃π(u− u′).

If the minimum is reached with P̂πu′ + βπ, then upper-bound P̃πu by P̂πu+ βπ to obtain:

L βu−L βu′ ≤ P̂π(u− u′).

Overall, we find that there exists Qπ ∈ Pπ such that L βu−L βu′ ≤ Qπ(u− u′). Similarly, we
find Qπ′ ∈ Pπ′ such that L βu−L βu′ ≥Qπ′(u− u′). We conclude that:

sp(L βu−L βu′)≤ sp((Qπ −Qπ′)(u− u′))≤ sp(u− u′).

This concludes the proof.
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By composition, we obtain the following result.

Corollary II.32. L is (1) monotone, (2) non-span-expansive and (3) linear. Moreover, sp(Lu−
Lv)≤ sp(L u−L v) for all u, v ∈ RS .

7.B.3 Fix-points of L and (weak) optimism

Lemma II.33. L has a fix-point in span semi-norm, i.e., ∃u ∈H , sp(Lu− u) = 0.

Proof. The idea is to apply Brouwer’s fix-point theorem in RS quotiented by the equivalence
relation u∼ v⇔ sp(u− v) = 0, where sp(−) becomes a norm. By linearity (Corollary II.32), L
is well-defined in this quotient space, and if L is shown continuous on RS , so will it be on the
quotient.

We show that L is sequentially continuous onH . Consider a sequence un ∈H N converging
to u ∈ H and fix ε > 0. Provided that n > Nε for Nε large enough, we have ∥un − u∥∞ < ε,
i.e., un − εe ≤ un ≤ u + εe. Therefore, in the one hand, for all v ≤ un, we have v − εe ≤ u
so max{v ≤ un : v ∈H } ≤ max{v ≤ u : v ∈H } + εe; And on the other hand, for all v ≤ u,
v + εe ≤ un so max{v ≤ u : v ∈H } ≤max{v ≤ un : v ∈H }+ εe. Hence:

∥max{v ≤ u : v ∈H }−max{v ≤ un : v ∈H }∥ ≤ ε.

It shows that Γ is continuous. The operator L β is obviously continuous as well, so L= Γ ◦L β

is continuous by composition. SinceH =H0 +Re withH0 compact and ocnvex, the quotient
H /∼ is compact and convex, and is preserved by L/∼. By Brouwer’s fix-point theorem, L/∼
has a fix-point inH /∼. So L has a span fix-point inH .

We write Fix(L) the span fix-points of L.

Lemma II.34. L has well-defined growth. Specifically, if Lu= u+ ge, then:

(1) There exists c > 0, s.t., for all v ∈H0, (ng− c)e+ u≤ Lnv ≤ (ng+ c)e+ u;
(2) If u′ ∈ Fix(L), then Lu′ − u′ = ge.

Proof. Setting c := maxv∈H0
∥v − u∥∞ <∞, one can check that u − ce ≤ v ≤ u + ce for all

v ∈ H0. this proves (1) for n = 0 and we then proceed by induction on n ≥ 0. By induction,
Lnv ≤ u+ (ng+ c)e and by Corollary II.32, L is monotone, so we have:

Ln+1v ≤ LLnv ≤ L(u+ (ng+ c)e) = u+ ((n+ 1)g+ c)e

where the last inequality use the linearity of L together with Lu= u+ ge. The lower bound of
Lnv is shown similarly, establishing (1).

For (2), pick u′ ∈ Fix(L) with Lu′ = u′+g′e. Up to translating u′, we can assume that u′ ∈H0
and apply (1). We get:

(ng− c)e+ u≤ ng′e+ u′ ≤ (ng+ c)e+ u.

Divided by n and let it go to infinity. We conclude that g= g′.

We finally have everything in hand to claim that L solves (II.12).

Corollary II.35. The growth of L given by g= Lu− u for u ∈ Fix(L) is well-defined, and:

∀u ∈H , ge = lim inf
n→∞

Lnu
n
= limsup

n→∞

Lnu
n

.

Moreover, g≥ g∗(H ,β ,M ).
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Proof. The growth property is a direct consequence of Lemma II.34. We show g≥ g∗(H ,β ,M )
which is defined in (II.12). Pick π ∈ Π, eM ∈M its model with h̃≡ h(π, eM) and P̃πh̃≤ P̂πh̃+βπ
where βπ(s) := β(s,π(s)). Up to translation, we can assume that h̃ ∈H0.

We have g(π, eM) = g̃ e for g̃ ∈ R, so

h̃+ g̃ e = r̃π + P̃πh̃≤ Lh̃

by definition. By monotony of L, see Corollary II.32, ng̃e + h̃ ≤ Lnh̃ follows by induction on
n≥ 0. By Lemma II.34, we further have Lnh̃≤ n(g+ c)e+ u where u ∈ Fix(L). In tandem,

g̃ e ≤ ge+
ce+ u− h̃

n
.

Letting n→∞, we deduce that g̃ ≤ g. Conclude by taking the best π and eM .

The next theorem follows directly with the same proof technique, and guarantees optimism.

Theorem II.36. Assume that g∗ + h∗ ≤ Lh∗. Then g≥ g∗.

The condition “g∗ + h∗ ≤ Lh∗” can be referred to as a weak form of optimism. We qualify
this version of optimism as weak because it is much weaker than optimism property suggested
by Fruit (2019) L ≥ L where L is the Bellman operator of the true MDP. Here, we only ask for
Lh∗ ≥ Lh∗, i.e., optimism at the fix-point of L. This condition is met as soon as M ∈M , h∗ ∈H
and β is large enough, but is in fact much more general.

7.B.4 Modelization of the projected mitigated Bellman operator L

The aim of this paragraph is to establish Corollary II.38, stating that Lu can be viewed as a
policy produced by Greedy(M , u,β).

Lemma II.37 (Modelization). For π ∈ Π, denote βπ(s) := β(s,π(s)), Rπ :=
∏

sR(s,π(s)) and
Pπ :=

∏

sP (s,π(s)). Fix u ∈ RS and let π := Greedy(M , u,β).

(1) If P is convex, then there exists (r̃π, P̃π) ∈ Rπ ×Pπ such that Lβu= r̃π + P̃πu.
(2) Assume that Lβu= r̃π + P̃πu. There exists r ′π ≤ r̃π such that Lu= r ′π + P̃πu.

The convexity requirement of (1) is always true if the kernel confidence region is chosen via
(C1-4).

Proof. For (1), fix a state s ∈ S , let a := π(s) and ρ :=min(supP (s, a)u, p̂(s, a)u+ β(s, a)). If
ρ = supP (s, a)u, then there is nothing to say because P is compact, hence the sup is a max
and ρ is of the form p̃(s, a)u. Otherwise, let p̃(s, a)u> p̂(s, a)u+ β(s, a) with p̃(s, a) ∈ P (s, a).
Introduce, for λ ∈ [0,1],

p̃λ(s, a) := λp̃(s, a) + (1−λ)p̂(s, a).

By continuity, there exists λ ∈ (0, 1) such that p̃λ(s, a)u= p̂(s, a)u+ β(s, a) and by convexity of
P (s, a), p̃λ(s, a) ∈ P (s, a). This proves (1).

For (2), recall that Lu= ΓL βu= Γ (r̃π + P̃πu). Since Γ v ≤ v, for v ∈ RS , we have:

Γ (r̃π + P̃πu)≤ r̃π + P̃πu.

Set r ′π := Γ (r̃π + P̃πu)− P̃πu. Check that r ′π satisfies r ′π ≤ r̃π and Lu= r ′π + P̃πu.

The last corollary bellow is crucial to claim that greedy policies are good choices in PMEVI-DT.

Corollary II.38 (Greedy modelization). Let u ∈ RS and fix π := Greedy(M , u,β). If P is
convex, then with the notations of Lemma II.37, there exists r̃π ≤ supRπ and P̃π ∈ Pπ such that
Lu= r̃π + P̃πu.
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7.C Proof of Theorem II.16: Regret analysis of PMEVI-DT
We recall a few notations. At episode k, the played policy is denoted πk. As a greedy response to
hk, by Proposition II.13 (3), there exists r̃k(s)≤ supRtk

(s,πk(s)) and P̃k(s) ∈ Ptk
(s,π(x)) such

that hk+gk = r̃k+ P̃khk. The reward-kernel pair M̃k = (r̃k, P̃k) is referred to as the optimistic model
of πk. We write Pk := Pπk

(M) the true kernel and P̂k := Pπk
(M̂tk

) the empirical kernel. Likewise,
we define the reward functions rk and r̂k. The optimistic gain and bias satisfy gk = g(πk, eMk)
and hk = h(πk, eMk). We further denote c0 = T

1
5 .

Important remark. To slightely simplify the analysis, we assume that PMEVI is run with
perfect precision ε = 0, i.e., that hk = PMEVI(Mtk

,βtk
, Γtk

, 0) hence is a span fix-point of Ltk
.

This assumption is mild and can be dropped by adding an extra error term that has to be carried
out in the calculations.

7.C.1 Number of episodes under doubling trick (DT)

Lemma II.39 (Number of episodes, Auer et al. (2009)). The number of episodes up to time
T ≥ SA is upper-bounded by:

K(T )≤ SA log2

�

8T
SA

�

.

7.C.2 Sum of bias variances

The Lemma II.40 below shows that
∑T−1

t=0 V(p(Zt), h∗) scales as Tsp(h∗)sp(r) + sp(h∗)Reg(T ) in
probability.

Lemma II.40. With probability at least 1−δ, we have:

T−1
∑

t=0

V(p(Zt), h∗)≤ 2sp(h∗)sp(r)T + sp(h∗)2
Ç

1
2 T log

�

1
δ

�

+ 2sp(h∗)
T−1
∑

t=0

∆∗(Zt) + sp(h∗)2.

Proof. Using the Bellman equation h∗(s) + g∗(s) = r(s, a) + p(s, a)h∗ +∆∗(s, a), we have:

V(p(Zt), h∗) =
�

p(Zt)− eSt

�

h∗2 + 2h∗(St)(∆
∗(Zt) + r(Zt)− g∗(St)).

Since sp(h∗2)≤ sp(h∗)2, we get:

T−1
∑

t=0

V(p(Zt), h∗)≤
T−1
∑

t=0

�

p(Zt)− eSt

�

h∗2 + 2sp(h∗)

�

sp(r)T +
T−1
∑

t=0

∆∗(Zt)

�

=
T−1
∑

t=0

�

p(Zt)− eSt+1

�

h∗2 + 2sp(h∗)

�

1
2sp(h∗)sp(r)T +

T−1
∑

t=0

∆∗(Zt)

�

(Lemma I.19)≤ 2sp(h∗)sp(r)T + sp(h∗)2
Ç

1
2 T log

�

1
δ

�

+ 2sp(h∗)
T−1
∑

t=0

∆∗(Zt) + sp(h∗)2

where the last inequality holds with probability 1−δ. This concludes the proof.

7.C.3 Regret and pseudo-regret: A tight relation

In this paragraph, we bound the regret with respect to the pseudo-regret (and conversely) up to
a factor of order (sp(h∗)sp(r) log( T

δ ))
1/2. Hence, in proofs, the pseudo-regret can be changed to

the regret with ease.
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Lemma II.41. With probability 1− 4δ, the regret and the pseudo-regret and linked as follows:
�

�

�

�

�

T−1
∑

t=0

(g∗ − Rt)−
T−1
∑

t=0

∆∗(Zt)

�

�

�

�

�

≤

(

2
q

�

2sp(h∗)sp(r) + 1
8

�

T log
�

T
δ

�

+
Ç

2sp(h∗) log
�

T
δ

�∑T−1
t=0 ∆

∗(Zt)

+sp(h∗)
�

1
2 T
�

1
4 log

3
4
�

T
δ

�

+ 4sp(h∗) log
�

T
δ

�

+ 2sp(h∗)

)

.

Proof. We rely again on the Poisson equation g∗(St)− r(Zt)−∆∗(Zt) = (p(Zt)− eSt
)h∗, so:

A :=

�

�

�

�

�

T−1
∑

t=0

(g∗ − Rt −∆∗(Zt))

�

�

�

�

�

≤

�

�

�

�

�

T−1
∑

t=0

�

p(Zt)− eSt

�

h∗
�

�

�

�

�

+

�

�

�

�

�

T−1
∑

t=0

(Rt − r(Zt))

�

�

�

�

�

≤ sp(h∗) +

�

�

�

�

�

T−1
∑

t=0

�

p(Zt)− eSt+1

�

h∗
�

�

�

�

�

+

�

�

�

�

�

T−1
∑

t=0

(Rt − r(Zt))

�

�

�

�

�

.

Up to the constant sp(h∗), the two error terms are respectively a navigation and a reward error.
The second is bounded using Azuma’s inequality (Lemma I.19), showing that with probability
1− 2δ, we have:

�

�

�

�

�

T−1
∑

t=0

(Rt − r(Zt))

�

�

�

�

�

≤
Ç

1
2 T log

�

1
δ

�

.

We continue by using Freedman’s inequality, instantiated in the form of Lemma I.21. With
probability 1−δ, we have:

�

�

�

�

�

T−1
∑

t=0

�

p(Zt)− eSt+1

�

h∗
�

�

�

�

�

≤

√

√

√

2
T−1
∑

t=0

V(p(Zt), h∗) log
�

T
δ

�

+ 4sp(h∗) log
�

T
δ

�

.

The quantity
∑T−1

t=0 V(p(Zt), h∗) is a classical one that appears at several places throughout
the analysis. Using Lemma II.40, we bount it explicitely. Further simplifying the bound withp

a+ b ≤
p

a+
p

b, we get that with probability 1− 4δ, we have:

A≤

(
q

2sp(h∗)sp(r)T log
�

T
δ

�

+
q

1
2 T log

�

1
δ

�

+
Ç

2sp(h∗) log
�

T
δ

�∑T−1
t=0 ∆

∗(Zt)

+sp(h∗)
�

1
2 T
�

1
4 log

3
4
�

T
δ

�

+ 4sp(h∗) log
�

T
δ

�

+ 2sp(h∗)

)

.

Bound log( 1
δ ) by log( T

δ ) and use
p

a+
p

b ≤ 2
p

a+ b to merge the terms in
q

T log( T
δ ) under a

single square-root.

Overall, Lemma II.41 states that the regret
∑T−1

t=0 (g
∗−Rt) and the pseudo-regret

∑T−1
t=0 ∆

∗(Zt)
differ by about (sp(h∗)T log( T

δ ))
1/2 in probability (up to asymptotically negligible additional

terms). In general, the precise form of Lemma II.41 is not convenient to use because it is of
form form x ≤ y +αpy +β that is not linear in y . Corollary II.42 factorizes the result into one
which will be more convenient in proofs.

Corollary II.42. Denote x :=
∑T−1

t=0 (g
∗ − Rt) and y :=

∑T−1
t=0 ∆

∗(Zt). Further introduce:

α :=
Ç

2sp(h∗) log
�

T
δ

�

β := 2
Ç

�

2sp(h∗)sp(r) + 1
2

�

T log
�

T
δ

�

+ sp(h∗)
�

1
2 T
�

1
4 log

3
4
�

T
δ

�

+ 2sp(h∗)
�

2 log
�

T
δ

�

+ 1
�

.

Then, with probability 1− 4δ, we have
p

x ≤py + 1
2α+

p

β and
p

y ≤
p

x +α+
p

β .

Proof. This is straight forward algebra from the result of Lemma II.41.
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7.C.4 Proof of Lemma II.17, reward optimism

We start by getting rid of the reward noise. We have:

Reg(T ) :=
T−1
∑

t=0

(g∗ − Rt) =
T−1
∑

t=0

(g∗ − r(Zt)) +
T−1
∑

t=0

(r(Zt)− Rt)

≤
T−1
∑

t=0

(g∗ − r(Zt)) +
Ç

1
2 T log

�

1
δ

�

with probability 1−δ by Azuma’s inequality (Lemma I.19). We are left with
∑T−1

t=0 (g
∗ − r(Zt)).

We continue by splitting the regret episodically and invoking optimism. By Lemma II.24, with
probability 1− 4δ, we have

∑T−1
t=0 (g

∗ − r(Zt))≤
∑

k

∑tk+1−1
t=tk

(gk − r(Zt)). Introduce

B0(T ) :=
∑

k

tk+1−1
∑

t=tk

(gk − r(Zt)). (II.14)

We focus on bounding B0(T ). By Assumption 2, r̃k(s, a) is of the form r̂k(s, a)+
Æ

C log(2SAT/δ)/Ntk
(s, a)−

ηk(s, a) with ηk(s, a) ∈ R. By the statement (3) of Proposition II.13, ηk(s, a)≥ 0. Therefore,

B0(T ) =
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) +
∑

k

tk+1−1
∑

t=tk

(r̃k(Zt)− r(Zt))

≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + SA+
∑

k

tk+1−1
∑

t=tk

1(Ntk
(Zt)≥ 1)



r̂k(Zt)− r(Zt) +

√

√

√
C log

�

2SAT
δ

�

Ntk
(Zt)





(∗)
≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + SA+
∑

k

tk+1−1
∑

t=tk

1(Ntk
(Zt)≥ 1)





√

√

√
2 log

�

2SAT
δ

�

Ntk
(s, a)

+

√

√

√
C log

�

2SAT
δ

�

Ntk
(s, a)





where (∗) holds with probability 1−δ following Lemma I.23. By the doubling trick rule (DT),
we have Nt(Zt)≤ 2Ntk

(Zt) for t < tk+1, so, with probability 1−δ,

B0(T )≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + SA+ 2
∑

k

tk+1−1
∑

t=tk

1(Ntk
(Zt)≥ 1)

√

√

√
(2+ C) log

�

2SAT
δ

�

Ntk
(s, a)

≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + SA+ 2
Ç

(2+ C) log
�

2SAT
δ

�

∑

s,a

NT (s,a)−1
∑

n=1

Ç

1
n

≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + SA+ 4
Ç

(2+ C) log
�

2SAT
δ

�

∑

s,a

Æ

NT (s, a)

(Jensen)≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + SA+ 4
Ç

(2+ C)SAT log
�

2SAT
δ

�

.

We conclude that with probability 1− 6δ, we have:

Reg(T )≤
∑

k

tk+1−1
∑

t=tk

(gk − r̃k(Zt)) + 4
Ç

(2+ C)SAT log
�

2SAT
δ

�

+
Ç

1
2 T log

�

2SAT
δ

�

+ SA. (II.15)

This concludes the proof.
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7.C.5 Proof of Lemma II.18, navigation error

We have:

∑

k

tk+1−1
∑

t=tk

(pk(St)− eSt
)hk ≤

∑

k

tk+1−1
∑

t=tk

(pk(St)− eSt+1
)hk +

∑

k

sp(hk)

≤
∑

k

tk+1−1
∑

t=tk

(pk(St)− eSt+1
)(hk − h∗)

︸ ︷︷ ︸

A1

+
∑

k

tk+1−1
∑

t=tk

(pk(St)− eSt+1
)h∗

︸ ︷︷ ︸

A2

+
∑

k

sp(hk).

The last term is O(c0SA log(T )) by Lemma II.39, hence is O(T 1/5 log(T )).
(STEP 1) We start by bounding A1. By Lemma II.24, with probability 1 − 4δ, we have

h∗ ∈ Htk
for all k ≤ K(T). So sp(hk − h∗) ≤ sp(hk) + sp(h∗) ≤ 2c0. By Freedman’s inequality

invoked in the form of Lemma I.21, we have with probability 1− 5δ,

A1 ≤

√

√

√

√2
∑

k

tk+1−1
∑

t=tk

V(p(Zt),hk − h∗) log
�

T
δ

�

+ 8c0 log
�

T
δ

�

It suffices to bound the first term. Recall that e is the vector full of ones. We have:

∑

k

tk+1−1
∑

t=tk

V(p(Zt),hk − h∗) =
∑

k

tk+1−1
∑

t=tk

V(p(Zt),hk − h∗ − (hk(St)− h∗(St)) · e)

≤
∑

k

tk+1−1
∑

t=tk

∑

s′∈S

p(s′|Zt)
�

hk(s
′)− h∗(s′)− (hk(St)− h∗(St))

�2

(∗)
≤ 3

∑

k

tk+1−1
∑

t=tk

E

�

∑

s′∈S

p(s′|Zt)
�

hk(s
′)− h∗(s′)− (hk(St)− h∗(St))

�2
�

�

�

�

Ot

�

+ 16c2
0 log

�

1
δ

�

= 3
∑

k

tk+1−1
∑

t=tk

(hk(St+1)− h∗(St+1)− (hk(St)− h∗(St)))
2 + 16c2

0 log
�

1
δ

�

.

Here the inequality (∗) holds with probability 1−δ following Lemma I.28. We will bound the
summand with the bias estimation error error(ck, s, s′) that spawns the inner regret estimation
B0(tk) =

∑k−1
ℓ=1

∑tℓ+1−1
t=tℓ

(gℓ − Rt). This inner estimation is linked to B(T) :=
∑

k,t(gk − Rt) the
overall optimistic regret by:

B0(tk)≤
K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt)−
K(T )
∑

ℓ=k

tℓ+1−1
∑

t=tℓ

(gk − Rt)

(∗)
≤

K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt)−
K(T )
∑

ℓ=k

tℓ+1−1
∑

t=tℓ

(g∗ − Rt)

≤
K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt)−
K(T )
∑

ℓ=k

T−1
∑

t=tk

�

∆∗(Zt) +
�

p(Zt)− eSt

�

h∗ + r(Zt)− Rt

�

≤
K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt) + sp(h∗)−
K(T )
∑

ℓ=k

T−1
∑

t=tk

��

p(Zt)− eSt+1

�

h∗ + r(Zt)− Rt

�



100 Chapter 7. Projected Mitigated Extended Value Iteration (PMEVI)

(†)
≤

K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt) + sp(h∗) + (1+ sp(h∗))
Ç

1
2 T log

�

1
δ

�

=: B(T ) + sp(h∗) + (1+ sp(h∗))
Ç

1
2 T log

�

1
δ

�

.

In the above, (∗) holds with probability 1− 4δ uniformly on k following Lemma II.24 and (†)
holds, also uniformly on k, with probability 1− δ by applying Azuma-Hoeffding’s inequality
(Lemma I.19). Continuing, still on the event specified by Lemma II.24, we have with probability
1− 6δ:

∑

k

tk+1−1
∑

t=tk

V(p(Zt),hk − h∗)≤ 3
∑

k

tk+1−1
∑

t=tk

3c0 + (1+ c0)
q

8tk log
�

2
δ

�

+ 2B0(tk)

Ntk
(St+1↔ St)

+ 16c2
0 log

�

1
δ

�

≤ 3
∑

k

tk+1−1
∑

t=tk

4c0 + (1+ c0)
q

32T log
�

2
δ

�

+ 2B(T )

Ntk
(St , At , St+1)

+ 16c2
0 log

�

1
δ

�

(DT)≤ 12c2
0S2A+ 3

�

4c0 + (1+ c0)
Ç

32T log
�

2
δ

�

+ 2B(T )
�

S2A log(T )

+ 16c2
0 log

�

1
δ

�

.

(STEP 2) For A2, by Freedman’s inequality invoked in the form of Lemma I.21 again, we
have with probability 1−δ,

A2 ≤

√

√

√

√2
∑

k

tk+1−1
∑

t=tk

V(pk(St), h∗) log
�

T
δ

�

+ 8c0 log
�

T
δ

�

≤

√

√

√

2
T−1
∑

t=0

V(p(Zt), h∗) log
�

T
δ

�

+ 8c0 log
�

T
δ

�

.

We recognize the sum of variance
∑T−1

t=0 V(p(Zt), h∗) that we leave as is.
(STEP 3) As a result, with probability 1− 7δ, we have:
∑

k

tk+1−1
∑

t=tk

(pk(St)− eSt
)hk ≤

√

√

√

2
T−1
∑

t=0

V(p(Zt), h∗) log
�

T
δ

�

+ 2SA
1
2

Æ

3B(T ) log
�

T
δ

�

+O
�

SA
1
2 T

7
20 log

3
4
�

T
δ

�

�

when c0 = T
1
5 .

7.C.6 Proof of Lemma II.19, empirical bias error

Because h∗ is a fixed vector, Bennett’s inequality (see Lemma I.27) guarantees that (p̂k(St)−
pk(St)h∗ is small as follows. By doing a union bound over Lemma I.27 with confidence δ

SAT over
all pairs (s, a) and visits counts N(s, a) ≤ T , we see that with probability 1− δ, for all k, we
have:
tk+1−1
∑

t=tk

(p̂k(St)− pk(St))h
∗ ≤ sp(h∗)SA+

tk+1−1
∑

t=tk

1(Ntk
(Zt)≥ 1)

�

s

2V(p(Zt ),h∗) log( SAT
δ )

Ntk
(Zt )

+
sp(h∗) log

�SAT
δ

�

3Ntk
(Zt )

�

(by doubling trick)≤ sp(h∗)SA+ 2
tk+1−1
∑

t=tk

1(Nt(Zt)≥ 1)

�
s

2V(p(Zt ),h∗) log( SAT
δ )

Nt (Zt )
+

sp(h∗) log
�SAT
δ

�

3Nt (Zt )

�

.

Summing this over k and factorizing over state-action pairs, we get that with probability 1−δ,

∑

k

(2k)≤ sp(h∗)SA+ 2
∑

s,a

 

NT (s,a)
∑

n=1

r

2V(p(s,a),h∗) log( SAT
δ )

n +
NT (s,a)
∑

n=1

sp(h∗) log
�SAT
δ

�

n

!
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≤ sp(h∗)SA+ 4
∑

s,a

Ç

NT (s, a)V(p(s, a), h∗) log
�

SAT
δ

�

+ 2sp(h∗)SA log
�

SAT
δ

�

log(T )

(Jensen)≤ sp(h∗)SA+ 4
√

√

SA
∑

s,a

V(p(s, a), h∗) log
�

SAT
δ

�

+ 2sp(h∗)SA log
�

SAT
δ

�

log(T )

= sp(h∗)SA+ 4

√

√

√

T−1
∑

t=0

V(p(Zt), h∗) log
�

SAT
δ

�

+ 2sp(h∗)SA log
�

SAT
δ

�

log(T )

We recognize the sum of variances
∑T−1

t=0 V(p(Zt), h∗), that is left to be upper-bounded later
on.

7.C.7 Proof of Lemma II.20, optimism overshoot

Because of the β -mitigation generated by Algorithm 5, the quantity (p̃k(St)− p̂k(St))hk is shown
to be directly related to V(p(Zt), h∗) up to a provably negligible error. Denote h′k the reference
point BiasProjection(Htk

, ctk
(−, s0)) used in Algorithm 5 (denoted h0 in the algorithm). By

Lemma II.24, with probability 1− 4δ, we have h∗ ∈Htk
for all k. To lighten up notations, we

write dtk
(s′, s) instead of error(ctk

, s′, s).
(STEP 1) Denote A := (p̃k(St)− p̂k(St))hk. By construction of p̃k, we have A≤ βtk

(Zt), so:

A≤ βtk
(Zt)

=:

√

√

√
2
�

V(p̂k(St), h′k) + 8c0

∑

s′∈S p̂k(s′|St)dtk
(s′, St) log

�

SAT
δ

��

Ntk
(Zt)

+
3c0 log

�

SAT
δ

�

Ntk
(Zt)

≤

√

√

√

2V(p̂k(St), h′k)

Ntk
(Zt)

︸ ︷︷ ︸

A1

+

√

√

√
16c0

∑

s′∈S p̂k(s′|St)dtk
(s′, St) log

�

SAT
δ

�

Ntk
(Zt)

︸ ︷︷ ︸

A2

+
3c0 log

�

SAT
δ

�

Ntk
(Zt)

.

The rightmost term of A is of order O(log2(T)) hence is negligible. We focus on the other
two. The analysis of A1 will spawn a term similar to A2, hence we start by the second. Recall
that dtk

is the bias error provided by Algorithm 3 and that the inner regret estimation is

B0(tk) =
∑k−1
ℓ=1

∑tℓ+1−1
t=tℓ

(gℓ − Rt). Now, remark that:

B0(tk)≤
K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt)−
K(T )
∑

ℓ=k

tℓ+1−1
∑

t=tℓ

(gk − Rt)

(∗)
≤

K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt)−
K(T )
∑

ℓ=k

tℓ+1−1
∑

t=tℓ

(g∗ − Rt)

≤
K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt)−
K(T )
∑

ℓ=k

T−1
∑

t=tk

�

∆∗(Zt) +
�

p(Zt)− eSt

�

h∗ + r(Zt)− Rt

�

≤
K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt) + sp(h∗)−
K(T )
∑

ℓ=k

T−1
∑

t=tk

��

p(Zt)− eSt+1

�

h∗ + r(Zt)− Rt

�

(†)
≤

K(T )
∑

ℓ=1

tℓ+1−1
∑

t=tℓ

(gk − Rt) + sp(h∗) + (1+ sp(h∗))
Ç

1
2 T log

�

1
δ

�

=: B(T ) + sp(h∗) + (1+ sp(h∗))
Ç

1
2 T log

�

1
δ

�

.
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In the above, (∗) holds with probability 1− 4δ uniformly on k following Lemma II.24 and (†)
holds, also uniformly on k, with probability 1− δ by applying Azuma-Hoeffding’s inequality
(Lemma I.19). Therefore, with probability 1− 5δ, for all k and t ∈ {tk, . . . , tk+1 − 1}, we have:
√

√

√
16c0

∑

s′∈S p̂k(s′|St)dtk
(s′, St) log

�

SAT
δ

�

Ntk
(Zt)

≤

q

16c0 log
�

SAT
δ

�∑

s′∈S Ntk
(St , At , s′)dtk

(s′, St)

Ntk
(Zt)

≤

q

16c0 log
�

SAT
δ

�∑

s′∈S Ntk
(St ↔ s′)dtk

(s′, St)

Ntk
(Zt)

≤

√

√

√

16c0 log
�SAT
δ

�

S

�

3c0+(1+c0)

�

1+
s

8T log
� 2
δ

�

�

+2B0(tk)

�

Ntk
(Zt )

≤

√

√

√

16c0 log
�SAT
δ

�

S

�

(1+c0)

�

3+2
s

8T log
� 2
δ

�

�

+2B(T )

�

Ntk
(Zt )

≤

√

√

√

16c0 log
�SAT
δ

�

S

�

(1+c0)

�

3+2
s

8T log
� 2
δ

�

+2B(T )

��

Ntk
(Zt )

.

This bound will be enough. We move on to A1. We have:
q

V(p̂k(St), h′k)≤
Ç

�

�V(p̂k(St), h′k)−V(p(Zt), h∗)
�

�+
Æ

V(p(Zt), h∗)

≤
Ç

�

�V(p̂k(St), h′k)−V(p̂k(Zt), h∗)
�

�

Æ

|V(p̂k(St), h∗)−V(p(Zt), h∗)|+
Æ

V(p(Zt), h∗)
(∗)
≤
√

√

8c0

∑

s′∈S

p̂k(s′|St)dk(s′, St) + sp(h∗)
Æ

∥p̂k(St)− pk(St)∥1 +
Æ

V(p(Zt), h∗)

(†)
≤
√

√

8c0

∑

s′∈S

p̂k(s′|St)dk(s′, St) + sp(h∗)

�

S log
�

SAT
δ

�

Ntk
(Zt)

�
1
4

+
Æ

V(p(Zt), h∗)

≤
A2

Æ

2Ntk
(Zt)

+ sp(h∗)

�

S log
�

SAT
δ

�

Ntk
(Zt)

�
1
4

+
Æ

V(p(Zt), h∗)

where (∗) is obtained by applying Lemma II.23 and (†) holds with probability 1−δ by applying
Weissman’s inequality, see Lemma I.23. All together, with probability 1−6δ, A is upper-bounded
by:

A≤

√

√

√
2V(p(Zt), h∗) log

�

SAT
δ

�

Ntk
(Zt)

+ 2A2 + sp(h∗)

√

√

√

√

2 log
�

SAT
δ

�

q

S log SAT
δ

Ntk
(Zt)

Æ

Ntk
(Zt)

+
3c0 log

�

SAT
δ

�

Ntk
(Zt)

︸ ︷︷ ︸

A3(k,t)

.

(STEP 2) The number of visits Nk(Zt) is lower-bounded by 1
2 Nt(Zt) when Nk(Zt) ≥ 1 by

doubling trick (DT). By summing over t and k, we find that with probability 1− 6δ,

∑

k

(3k)≤ SAc0 +
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1

√

√

√
2V(p(Zt), h∗) log

�

SAT
δ

�

Ntk
(Zt)

+
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1(2A2(k, t) +A3(k, t))

(DT)≤ SAc0 + 2
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1

√

√

√2V(p(Zt), h∗) log
�

SAT
δ

�

Nt(Zt)
+
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1(2A2(k, t) +A3(k, t))
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≤ SAc0 + 4

√

√

√

2SA
T−1
∑

t=0

V(p(Zt), h∗) log
�

SAT
δ

�

+
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1(2A2(k, t) +A3(k, t))

where the last inequality is obtained with computations that are similar to those detailed in the
proof of Lemma II.19. We recognize the variance that we will leave as is. We finish the proof by
bounding the lower order terms A2 and A3.

(STEP 3) We start with A2. We have:

∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1A2(k, t) :=

∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1

√

√

√

16c0 log
�SAT
δ

�

S

�

(1+c0)

�

3+2
s

8T log
� 2
δ

�

+2B(T )

��

Ntk
(Zt )

(DT)≤ 2

s

16c0S log
�

SAT
δ

�

�

(1+ c0)
�

3+ 2
Ç

8T log
�

2
δ

�

+ 2B(T )
��

SA log(T )

≤ 8(1+ c0)S
3
2 A log

3
2
�

SAT
δ

�

�

2+ 4T
1
4 log

1
4
�

SAT
δ

�

+
Æ

2B(T )
�

.

(STEP 4) We are left with A3. We have:

∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1A3(k, t) :=

∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1



sp(h∗)

√

√

√

√

2 log
�

SAT
δ

�

q

S log SAT
δ

Ntk
(Zt)

Æ

Ntk
(Zt)

+
3c0 log

�

SAT
δ

�

Ntk
(Zt)





(DT)≤
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1



sp(h∗)

√

√

√

√

2 log
�

SAT
δ

�

q

S log SAT
δ

Ntk
(Zt)

Æ

Ntk
(Zt)

+
3c0 log

�

SAT
δ

�

Ntk
(Zt)





≤ Csp(h∗)S
5
4 AT

1
4 log

3
4
�

SAT
δ

�

+ 6c0SA log
�

SAT
δ

�

= O
�

sp(h∗)S
5
4 AT

1
4 log

�

SAT
δ

�

�

.

This concludes the proof.

7.C.8 Proof of Lemma II.21, second order error

Recall that by Lemma II.24, with probability 1− 4δ, h∗ ∈Htk
for all k, hence sp(hk − h∗)≤ 2c0

for all k on the same event. Therefore, with probability 1− 4δ,

∑

k

(4k) := 2c0SA+
∑

k

tk+1−1
∑

t=tk

1Ntk
(Zt )≥1(p̂k(St)− pk(St))(hk − h∗)

= 2c0SA+
∑

k

tk+1−1
∑

t=tk

∑

s′∈S

1Ntk
(Zt )≥1(p̂k(s

′|St)− pk(s
′|St))(hk − h∗(s′))

(∗)
≤ 2c0SA+ 2

∑

k

tk+1−1
∑

t=tk

∑

s′∈S

1Ntk
(Zt )≥1(p̂k(s

′|St)− pk(s
′|St))dtk

(s′, St)

(†)
≤ 2c0SA+ 2

∑

k

tk+1−1
∑

t=tk

∑

s′∈S

1Ntk
(Zt )≥1






dk(s

′, St)

√

√

√

√

2p̂k(s′|St) log
�

S2AT
δ

�

Ntk
(Zt)

+ 3dk(s
′|St)

log
�

S2AT
δ

�

Ntk
(Zt)







≤ 2c0SA+ 2
∑

k

tk+1−1
∑

t=tk

∑

s′∈S

1Ntk
(Zt )≥1







p

c0

√

√

√

√

2p̂k(s′|St)dk(s′, St) log
�

S2AT
δ

�

Ntk
(Zt)

+
3c0 log

�

S2AT
δ

�

Ntk
(Zt)
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≤ 2c0SA+ 4
∑

k

tk+1−1
∑

t=tk

∑

s′∈S

1Ntk
(Zt )≥1







p

c0

√

√

√

√

2p̂k(s′|St)dk(s′, St) log
�

S2AT
δ

�

Nt(Zt)
+

3c0 log
�

S2AT
δ

�

Nt(Zt)







where (∗) uses that h∗ ∈Htk
, and (†) is obtained by applying the empirical Bernstein’s inequality,

see Lemma I.24, to p̂k(s′|St)− pk(s′|St), and holds with probability 1−δ. The rightmost term’s
sum is upper-bounded by:

4
∑

k

tk+1−1
∑

t=tk

∑

s′∈S

3c0 log
�

S2AT
δ

�

Nt(Zt)
≤ 12S2A log(T ) log

�

S2AT
δ

�

.

For the other term, follow the line of the proof of Lemma II.20 (term A2). We have with
probability 1− 5δ (4δ of which is by invoking Lemma II.24):

p̂k(s
′|St)dk(s

′, St) =
Ntk
(St , At , s′)

�

(1+ c0)
�

1+
q

8tk log
�

2
δ

�

�

+ 2B0(tk)
�

Ntk
(St ↔ s′)Ntk

(Zt)

≤

�

(1+ c0)
�

3+ 2
q

8T log
�

2
δ

�

+ 2B(T )
��

Ntk
(Zt)

.

Therefore,

p

c0

√

√

√

√

2p̂k(s′|St)dtk
(s′, St) log

�

S2AT
δ

�

Nt(Zt)
≤

4(1+ c0)
r

�

3+ 2
q

8T log
�

2
δ

�

+ 2B(T )
�

log
�

S2AT
δ

�

Nt(Zt)
.

Summing over k, t, s′, with probability 1− 6δ, we have:

∑

k

(4k)≤

(

16S2A(1+ c0) log
1
2

�

S2AT
δ

�
�

p

2B(T ) + 2
�

8T log
�

2
δ

��
1
4

�

+32S2A
�

log(T ) log
�

S2AT
δ

�

+ (1+ c0) log
1
2

�

S2AT
δ

��

)

This concludes the proof.

7.D Details on experiments

7.D.1 River swim

Experiments are run on n-states river-swim. Such MDPs are, despite their size, known to be hard
to learn. They consists in n states aligned in a straight line with two playable actions RIGHT and
LEFT whose dynamics are given in the figure below. Rewards are Bernoulli and null everywhere
excepted for r(sn, RIGHT) = 0.95 and r(s0, LEFT) = 0.05.

3-state river-swim. The gain is g∗ ≈ 0.82 and h∗ ≈ (−4.28,−2.24, 0.4).

5-state river-swim. The gain is g∗ ≈ 0.82 and h∗ ≈ (−9.62,−7.58,−4.96,−2.27,0.45).
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Figure 7.D.1: The kernel of a n-state river-swim.
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Part III

Instance Optimal Regret in Average
Reward MDPs

This part is dedicated to the first model dependent regret lower bound for communicating
Markov decision processes, which appears to be much more challenging than in the recurrent
setting. We start with the lower bound in Chapter 8. In Chapter 9, we show that the lower
bound is intractable, hence that any asymptotically optimal algorithmic solution should, morally,
avoid computing it. Regardless of these computational difficulties, Chapter 10 provides an
algorithmic scheme named ECoE that manages to approach the lower bound arbitrarily close.
This shows that the lower bound of Chapter 8 is optimal, or roughly speaking, that it is the “true”
lower bound for communicating Markov decision processes. In its current form, ECoE is not
reasonably implementable because it solves NP-hard problems at every time step. The question
of tractable solutions are left for future works.

This part is the conclusion of works done in collaboration with Odalric-Ambrym Maillard.
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Chapter 8

The instance dependent lower
bound

8.1 A preliminary example

We begin by taking a look at a generic example and try to address a few essential questions. How
should an efficient planner behave? How can the way they navigate the model be described?

1 2

3

∗

§

†

‡

0.7$

0.4

0.6
0.6$

0.5
0.5

0.5$

0.7 0.3

0.1$

0.4 0.4

0.2

Figure 8.1.1: In the above model, there are two deterministic policies that are determined by
the choice of action at state 1, identified by the vectors (∗, †, ‡) and (§, †, ‡). The optimal pairs
Z ∗∗ = {(1, §), (2, †)} are represented in red and the optimal policy is (§, †, ‡).

In the reference model M given in Figure 8.1.1, the unique optimal policy is (§, †, ‡) whose
recurrent pairs are Z ∗∗ = {(1, §), (2, †)}, and the Bellman gaps satisfy ∆(z) = 0 with ∆(z)> 0
only for z = (1,∗). Any planner with sublinear regret on M will therefore mostly play pairs
among (1, §), (2, †) and (3, ‡) and avoid playing (1,∗). The structure of M enforces such a
planner to spend most of its time playing pairs of Z ∗∗, looping around between states 1 and 2.
Although the planner mostly plays (1, §) and (2, †), a consistent learner will also make sure
that the plausibility that ∗ is a better action than § from state 1 vanishes, meeting an old idea
from Thompson (1933). Otherwise, at least from a Bayesian viewpoint, the planner is subjected
to mistake (1,∗) for a suboptimal pair in alternative models where it actually is optimal. This
will be made formal later on; A consistent planner must play (1,∗) at least infinitely often. Of
course, an efficient planner will limit the number of tries to (1,∗) to the bare minimum, that
shall therefore be visited a negligible amount in front of (1, §) and (2, †).

Overall, we see that any consistent planner will explore M in an unbalanced way, spending
most of its time alternating between (1, §) and (2, †), only rarely trying (1,∗) and taking (3, ‡)
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to come back to playing optimal pairs. Formally, we see that we should have:

NT (z) = Θ(T ) if z ∈ Z ∗∗ and NT (z) = o(T ) if z /∈ Z ∗∗. (III.1)

The way the environment may be explored is determined by the environment, and an efficient
learner shall control this environment in order to gather as much information as possible with
the smallest cost possible. We are therefore interested in the structure imposed on the vector of
visits counts NT by the environment. Say that NT (z) ∼ α(z) f (T) when z /∈ Z ∗∗ and for some
dimensionless function f (T ) = o(T ), that will happen to be f (T ) = log(T ). Then, this α is what
one is really interested in, because the first order regret is given by what happens outside of
Z ∗∗. This provides a solid motivation to look for a way to erase what happens on Z ∗∗ during
play. Not only are pairs of Z ∗∗ zero-cost, but we additionally see that in M of Figure 8.1.1, any
state of S (Z ∗∗) is reachable from another state of S (Z ∗∗) using only pairs of Z ∗∗. Hence, at
any point in time, one does not really mind whether the planner is currently in state 1 or in
state 2, because zero-cost pairs can be played to reach one state from the other; And so does a
planner that has correctly identified the optimal pairs. Intuitively, optimal pairs can be used to
take “shortcuts” in the environment and every state of S (Z ∗∗) accounts for the same.

From a high level viewpoint, NT is a quasi-flow and more precisely, it satisfies
∑

z NT (z; s′) =
∑

a′∈A (s′) NT (s′, a′)±1 for all s′ ∈ S , where NT (z; s′) :=
∑T−1

t=0 1(Zt = z, St+1 = s′) is the observed
number of transitions to s′ upon playing z. Informally, the number of visits counts exiting a
state is equal to the number of visits that entered that state, up to an error due to the first and
last visited states. We are not interested in what happens on Z ∗∗(M), which is likely to hold
the dominant mass of NT seen as a flow. So we artificially remove the mass on Z ∗∗(M), see
Figure 8.1.2. The obtained object is not a quasi-flow of M and is instead a quasi-flow of the
Markov decision process obtained by merging the states 1 and 2.
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‡
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108

125 49
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⇝

1 2

3

∗

§

†

‡
8

10

0
0

0 0
3 4

1

Figure 8.1.2: A quasi-flow of visit counts (to the left) and the object obtained by removing the
mass on Z ∗∗(M).

So, the states of S (Z ∗∗) are merged into a single quotient state. The kernel of M is
reworked to fit the new state-space, as pictured in Figure 8.1.3.

The resulting quotient model is called a minor of M , in reference to graph theory, and is
denoted M/Z ∗∗. Because the visit counts on M/Z ∗∗ truncated to Z \Z ∗∗(M) are a quasi-flow, it
happens that the vector α introduced upstream must be an invariant measure of M/Z ∗∗. It means
that an efficient consistent planner will explore Z \Z ∗∗ following (1) an invariant measure α of
M/Z ∗∗ that is (2) informative enough so that when used to dictate exploration, all sub-optimal
pairs are visited enough to eliminate the plausibility that they are optimal; and (3) makes
the regret as small as possible. Indeed, the first order regret is given by

∑

z /∈Z ∗∗ NT (z)∆∗(z)∼
∑

z /∈Z ∗∗ α(z)∆
∗(z) · f (T) grows with the dot product between α and ∆∗. Hence the smaller

is
∑

z∈Z ∗∗ α(z)∆
∗(z), the smaller the regret. The best possible behavior that a planner may
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Figure 8.1.3: The contraction of M (see Figure 8.1.1) by Z ∗∗, written M/Z ∗∗.

follow is therefore described as the optimization problem given by (1-3). In this optimization
problem, (1) is reminiscent of what is called the navigation constraint in the literature, (2) the
information constraint and (3) is the objective function.

In the sequel, we first investigate information constraints in Section 8.2, then focus on
navigation constraints and the role of minors Section 8.3, and finally state the regret lower
bound in Section 8.4.

8.2 Confusing models and information constraints

In Section 8.1, we have introduced the idea that a consistent planner must collect enough
information to reject the plausibility that seemingly suboptimal pairs are indeed suboptimal.
This idea goes back to Lai and Robbins (1985) although our proof machinery is more modern
and borrows the formalism of Kaufmann et al. (2016). The core of the argument is a change of
measure (Lemma I.18). For all measurable function f : OT → [0,1] of observations, we have

∑

z∈Z
E(πt ),M[NT (z)]KL(M(z)||M†(z))≥ kl

�

E(πt ),M[ f (OT )],E
(πt ),M (πt )[ f (OT )]

�

(III.2)

where KL(M(z)||M†(z)) := KL(r(z)||r†(z)) + KL(p(z)||p†(z)). In (III.2), the LHS is the expected
log-likelihood ration between M and M†, and the RHS can be interpreted as a log-likelihood
ratio for the value of a test function. This inequality was used to establish the minimax regret
lower bound in Part II. Here, it is used to establish the information constraints of the model
dependent lower bound. The idea is that if M and M† have different optimal policies, then
a consistent planner should behave differently on M and M†. Therefore, with the right test
function f , we may show E(πt ),M[ f (OT )]≈ 1 while E(πt ),M†

[ f (OT )]≪ 1, to conclude that:
∑

z∈Z
E(πt ),M[NT (z)]KL(M(z)||M†(z))≫ 1.

Obviously, all this needs to be precisely quantified. We start by introducing alternative sets.

Definition III.1. ForM ∈M(Z ) a model space and M ∈M , we introduce:

(1) The alternative models of M, denoted Alt(M ;M ) as all the M† ∈ M such that
M ≪ M† and Π∗(M)∩Π∗(M†) =∅;

(2) The confusing models of M, denoted Cnf(M ;M ), as all the alternative M† ∈ M
such that M = M† on Z ∗∗(M).
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WhenM is clear in the context, we write Alt(M) and Cnf(M) instead.

In the sequel of the section, we show that if an algorithm is consistent, then it must explore
the suboptimal part of the model sufficiently enough to statistically reject confusing models.1 We
conjecture that the result below can be generalized to M† ∈ Alt(M). Although this generalization
is not necessary to obtain the regret lower bound, it may be of interest for more general purposes,
for e.g., the identification of gain optimal policies. Our proof technique is simpler by using
structure that confusing models have over mere alternative models and rely on strong consistency
(Definition I.22). Recall that a planner is strongly consistent onM if, for all ε > 0 and M ∈M ,
E(πt ),M[Reg(T )] = o(T ε).

The result is the following.

Proposition III.1 (Information constraint). Let M ∈M and let M† ∈ Cnf(M). Then, every
strongly consistent learner satisfies:

lim inf
T→∞

∑

z EM[NT (z)]KLz

�

M ||M†
�

log(T )
≥ 1.

This result is established using the notion of pair covering, or covering. This notion is
related to closed state-action spaces in a dynamical sense. A subspace Z0 ⊆ Z is forward closed
if p(−|x) is supported in S (Z0) for all z ∈ Z0. If S (Z0) = S and Z0 is forward closed, then
it is the graph of the randomized policy π0 obtained as π(−|s) is the uniform distribution on
{a : (s, a) ∈ Z0}; And, conversely, the graph of any randomized policy defines a forward closed
pair space. For instance, Z∗(M) is forward closed in M .

Definition III.2 (Covering of a forward closed space). LetZ0 a forward closed state-action space of
M. A covering of Z0 is a subset Zc ⊆ Z0 such that, for every policy π whose recurrent pairs belong
to Z0, for every invariant probability measure µ of π seen as an element of RZ , supp(µ)∩Zc ̸=∅.

The idea is that if Zc covers Z0, then provided Z0 is visited a lot, so will Zc in probability.

Lemma III.2 (Visits of coverings). Let M ∈M . Let Z0 a closed state-action space of M
and let Zc a covering of it. Then, there exists constraints εc, Dc > 0 such that, whatever the
planner, we have:

∀u≥ 0, PM

 

∑

x∈Zc

NT+1(z)≤ εc T − u− Dc

∑

x /∈Z0

NT+1(z)

!

≤ exp

�

−
2u2

T D2
c

�

.

Proof of Lemma III.2. Consider the revised version M f of M with revised reward vector:

f (z) :=

¨

−1 if z ∈ Zc

0 otherwise

Remark that Z0(M) is closed in M f . Therefore, M f |Z0(M) is well-defined and we can consider
an optimal policy π0

f of it which is extended to M f as π f by setting it to the uniform policy
everywhere it is undefined. Denote g f , h f and ∆ f its gain, bias and gap functions.

1Alternative sets play a secondary role, but will come in useful later on.
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By optimality of π f on M f |Z0(M), we have ∆ f (z) ≥ 0 for all z ∈ Z0(M) and because Zc
is a covering of Z0(M), we also have g f (s) < 0 for all s ∈ S (Z0(M), hence for s ∈ S . Let
εc := −maxs∈S g f (s)< 0, and denote Dc :=max{sp(h f ), maxz∈Z |∆ f (z)|}<∞. We have:

∑

z∈Zc

NT+1(z) = −
T
∑

t=1

f (Zt)

(∗)
= −

T
∑

t=1

�

g f (St) +
�

eSt
− p(Zt)

�

h f −∆ f (Zt)
�

≥ εc T +
T
∑

t=1

�

eSt+1
− p(Zt)

�

h f − Dc

 

1+
∑

z /∈Z0

NT+1(z)

!

where (∗) invokes the Poisson equation g f (s)+h f (s) = f (s, a)+ p(s, a)h f +∆ f (s, a). By Azuma-
Hoeffding’s inequality, the MDS term satisfies:

∀u≥ 0, PM

�

T
∑

t=1

�

eSt+1
− p(Zt)

�

h f ≤ −u

�

≤ exp

�

−
2u2

T D2
c

.

�

This concludes the proof.

We may henceforth prove the proposition of interest.

Proof of Proposition III.1. Let M† ∈ Alt(M), fix T ≥ 1 and η > 0. We from that Lemma I.18 that
if E is a FT -measurable event, then

∑

z∈Z
EM[NT (z)]KLz

�

M ||M†
�

≥ kl
�

PM(E ),PM†
(E )

�

. (III.3)

The goal of the proof is to find an event E that is very likely under M and very unlikely under
M†. The RHS of the above equation will be large and the result will follow. The construction of
this event is motivated by the idea that the recurrent states of optimal policies of M and M† are
not the same, hence the pairs a consistent algorithm will spend most of its time on will not be
the same on M and M†.

(STEP 1) The fact that M† is a confusing model of M implies two important things. First,
the structure of Z∗∗(M) is preserved on M† and M†≫ M , hence every π ∈ Π∗(M) eventually
converges to Z∗∗(M) on M† and has gain equal to g(π, M†) = g∗(M). Second, no policy of
Π∗(M) is optimal in M† by definition, hence the gain achieved on Z∗∗(M) on M† is lower
than g∗(M†). Both together, it follows that every policy that converges to Z∗∗(M) in M† has
sub-optimal gain. Therefore,

Zc :=Z∗∗(M)∩Z−(M†)

is a covering ofZ∗(M) in M and in M†, and Lemma III.2 is applicable. Provided T ≥ (4Dc(M)/εc(M))3,
we have:

PM

 

∑

z∈Zc

NT+1(z)≤
1
2
εc(M)T − Dc(M)

 

1+
∑

z∈Z−(M)

NT+1(z)

!!

≤
1
T

. (III.4)

We will be looking at the event E :=
∑

z∈Zc
NT+1(z) ≥

1
4εc(M)T , showing that it has high

probability in M and small probability in M†.
(STEP 2) We start by looking at what happens in M . We have:

PM

 

Dc(M)
∑

z∈Z−(M)

NT+1(z)≥
1
8εc(M)T

!

≤
Dc(M)EM

�

∑

z∈Z−(M)
NT+1(z)

�

1
8εc(M)T
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=
Dc(M)

∑

z∈Z−(M)
∆∗(z, M)−1∆∗(z, M)EM[NT+1(z)]

1
8εc(M)T

≤
Dc(M)EM[Reg(T )]

∆∗min(M) ·
1
8εc(M)T

= o
�

Tη−1
�

where the last equality follows by consistency. Moreover, if T is large enough, we have Dc(M)≤
1
8εc(M)T , so all combined with (III.4), we obtain:

PM

 

∑

z∈Zc

NT+1(z)≥
1
4εc(M)T

!

= 1− o
�

Tη−1
�

.

(STEP 3) Meanwhile, by construction, we have Zc ⊆ Z \Z ∗(M†), so:

PM†

 

∑

z∈Zc

NT+1(z)≥
1
4εc(M)T

!

≤ PM†

 

∑

z /∈Z ∗(M†)

NT+1(z)≥
1
4εc(M)T

!

≤
EM†�∑

z /∈Z ∗(M†) NT+1(z)
�

1
4εc(M)T

=

∑

z /∈Z ∗(M†)∆
∗(z, M†)−1∆∗(z, M†)EM†

[NT+1(z)]
1
4εc(M)T

≤
EM†
[Reg(T )]

∆∗min(M
†)1

4εc(M)T
= o

�

Tη−1
�

where the last equality follows by consistency again.
(STEP 4) We conclude with the likelihood-ratio inequality:

∑

x∈Z
EM[NT+1(z)]KLz(M ||M†)≥ kl

�

PM(E ),PM†
(E )

�

= kl
�

1− o
�

Tη−1
�

, o
�

Tη−1
��

≳ (1−η) log(T ).

Divide by log(T ) and take the liminf in T . Conclude by making η→ 0. ■

8.3 Minors and navigation constraints

In this section, we provide a formal descriptions of minors (Definition III.4) behind the notation
M/Z ∗∗ in Figure 8.1.3. They generalize edge contraction on graphs to Markov decision processes
and are close in spirit to the state reduction/aggregation of Ortner (2013). Minors are obtained
by contracting subsets of pairs of the initial model and in opposition to classical graph theory, we
won’t allow for the contraction of arbitrary subsets of pairs. The contracted subset Z ′ must be
closed (Definition III.3), meaning that (1) one remains in the states spawned by Z ′ by playing
pairs of Z ′, and (2) it does not contain transient states. The first property implies that M can
be restricted to Z ′ and the states it spawns, and (2) that the obtained model is a union of
communicating models.

Definition III.3 (Closed set of M). A subset Z0 ⊆ Z with corresponding states S (Z0) is a closed
set of M if it is (1) forward closed meaning p(−|z) is supported in S (Z0) for all z ∈ Z0, and
(2) backward closed, meaning the model M constrained to Z0

2 is a union of communicating
components (no transient states).

2It is well-defined by forward closeness (1).
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A simple, yet illuminating observation, is that a subset Z0 is closed if, and only if it is the set
of recurrent pairs under some randomized stationary policy. The most important example of
closed set, in this chapter, is the set of optimal pairs Z ∗∗(M ), which is obtained as the recurrent
pairs of the policy π∗ given by π∗(s) as the uniform distribution on {a ∈A (s) : (s, a) ∈ Z ∗(M)}.

Definition III.4 (Minors/Contractions). Up to re-labeling actions, assume that A (s) ∩
A (s′) = ∅ for s ̸= s′. Let M ∈ M a model and fix Z0 ⊆ Z a closed set of M. The
contraction of M by Z0 is the model M/Z0 obtained by merging every communicating
component of Z0 into single states. More formally, letting S1, . . . ,Sk the communicating
components of Z0, we have:

(1) The state space is S (M/Z0) := {S1, . . . ,Sk} ∪ {{s} : s ∈ S and ∀i, s /∈ Si} and con-
tracted states are denoted [s];

(2) The action space is, for [s] ∈ S (M/Z0),A (M/Z0)[s] :=
⋃

s′∈[s]A (s
′); Because in

M, the choice of an action uniquely determines a state, the state-action spaceZ (M/Z0)
is canonically isomorphic to Z (M), by associating ([z], a) to (s′, a) where s′ is the
unique state such that a ∈A (s′).

(3) The kernel is [p]([s1]|[s0], a) :=
∑

s′1∈[s1]
p(s′1|s

′
0, a);

(4) The reward is [r]([s0], a) := r(s′0, a).

We also say that M/Z0 is a minor ofM .

Minors generically provide a descriptive decomposition of how a Markov decision process can
be explored. In Section 8.1, we have claimed that if NT (z)∼ α(z) f (T ) when z /∈ Z ∗∗ for some
α ∈ RZ and function f (T ) = o(T ), then α must be an invariant measure of M/Z ∗∗. This follows
from a much more general principle. The collection of optimal pairs Z ∗∗ is an example of closed
set (Definition III.3), that themselves are recurrent pairs of randomized policies. Independently
of the way a planner explores the model, the normalized ratio of visits outside of a closed set
converges to an invariant measure of the minor induced by that closed set, provided that the
outside is visited at least logarithmically often.

Proposition III.3. Let π a randomized policy and let Zπ its recurrent pairs. Assume that
E[
∑

z /∈Zπ
NT (z)] = Ω(log(T )). The vector given by

µt(z) :=
E[Nt(z)]1(z /∈ Zπ)

E
�

∑

z′ /∈Zπ
Nt(z′)

�

converges to the space of invariant measures (see Definition I.23) of M/Zπ, i.e., every limit
point of (µt) is an invariant measure of M/Zπ.

This is result is coupled with a second observation. It can be shown that if the expected visits
counts can be written as E(πt )[NT (z)] = α(z)T + o(T), then Z(πt ) := {z : α(z) > 0} is a closed
set that, if the planner is consistent, is a subset of Z ∗∗. Proposition III.3 supports the previously
motivated idea that the “sublinear” part of visit counts is easier to understand after contracting
the model by Z ∗∗(M).

It will be used in the following form.
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Corollary III.4 (Navigation constraints). Consider a strongly consistent algorithm and let
M ∈M such that Cnf(M) ̸=∅. Then the vector given by

µT (z) :=
EM[NT (z)]1(z /∈ Z∗∗(M))

EM
�

∑

z′ /∈Z∗∗(M)
NT (z′)

�

converges to Inv(M/Z∗∗(M))∩P (Z ) when T →∞.

Proof of Corollary III.4. Since Cnf(M) ̸=∅, there exists M† ∈ Cnf(M) to which is associated at
least one z /∈ Z∗∗(M) such that KLz(M ||M†) ∈ (0,∞). By Proposition III.1, we have EM[NT (z)]≳
KLz(M ||M†)−1 log(T ), and from this follows that EM[

∑

z /∈Z∗∗(M)
NT (z)] = Ω(log(T )). Moreover,

remark that Z∗∗(M) is closed as the set of recurrent pairs of the policy π∗ such that π∗(−|s) is
uniform on {a : (s, a) ∈ Z∗∗(M)} if s ∈ S (Z∗∗(M)) and uniform onA (s) otherwise. Accordingly,
we can apply Proposition III.3, to see that

µ′T (z) :=
EM[NT (z)]1(z /∈ Z∗∗(M))

EM
�

∑

z′ /∈Z∗∗(M)
NT (z′)

�

converges to Inv(M/Z∗∗(M)) as T →∞. The fact that it is a probability vector is obvious.

We now move on to the proof of Proposition III.3.

Proof of Proposition III.3. Denote f (t) := E[
∑

z′ /∈Zπ
Nt(z′)] for short. By definition, the states

[M] := M/Zπ are subsets of states of the original model M and its pair-space is canonically
identical to the one of M . Introduce the Z c

π-truncated visit counts:

N ′t (z) := 1(z /∈ Zπ)Nt(z)

with the induced state-wise visits N ′t (s) :=
∑

a N ′t (s, a), and in the minor N ′t [s] :=
∑

s′∈[s] N
′
t (s
′).

By definition, we have µt(s, a) ≡ E[N ′t (s, a)] f (t)−1. Let µt(s) :=
∑

a∈A (s)µt(s, a) = E[N ′t (s)]
and, for [s] ∈ S [M] a state of the contraction, µt[s] :=

∑

s′∈S µt(s′) = E[N ′t [s]]. Regarding N ′t
as a vector indexed by states of [M], a remarkable property of N ′t is that it satisfies the quasi-flow
property (what goes in is what goes out):

N ′t [s] =
∑

s′∈[s]

∑

z

N ′t (z; s′) + 1(S0 ∈ [s])− 1(Zt ∈ Zπ, St ∈ [s]) =
∑

s′∈[s]

∑

a∈A (s′)

N ′t (s
′, a) (III.5)

where N ′t+1(z; s′) := 1(z /∈ Zπ)Nt+1(z; s′). This is established by induction on t ≥ 0. This is
obvious for t = 0, and for t ≥ 1, we have:

(−) :=
∑

s′∈[s]

∑

a∈A (s′)

N ′t (s
′, a)

≡ N ′t [s] = N ′t−1[s] + 1(St ∈ [s], X t /∈ Zπ)
(∗)
= 1(S0 ∈ [s])− 1(X t−1 ∈ Zπ, St−1 ∈ [s]) +

∑

s′∈[s]

∑

z

N ′t−1(z; s′) + 1(St ∈ [s], X t /∈ Zπ)

= 1(S0 ∈ [s]) +
∑

s′∈[s]

∑

z

N ′t (z; s′)

− 1(X t−1 ∈ Zπ, St−1 ∈ [s]) + 1(St ∈ [s], X t /∈ Zπ)− 1(St ∈ [s], X t−1 /∈ Zπ)

where (∗) is obtained by induction. We focus on the RHS:

α= −1(X t−1 ∈ Zπ, St−1 ∈ [s]) + 1(St ∈ [s], X t /∈ Zπ)− 1(St ∈ [s], X t−1 /∈ Zπ)
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(†)
= −1(Zt ∈ Zπ, St ∈ [s]).

The equality (†) is shown by distinguishing cases.

• If X t−1 ∈ Zπ and Zt ∈ Zπ, then because the states of Zπ are closed by playing pairs
of Zπ, it follows that [St] = [St−1] correspond to the same recurrent class of π. If
[St] = [St−1] ̸= [s], then we get (†) : 0= 0 and if [St] = [St−1] = [s], then (†) : −1= −1.

• If X t−1 /∈ Zπ and Zt /∈ Zπ, then (†) : 0= 0.

• If X t−1 ∈ Zπ and Zt /∈ Zπ, then similarly [St−1] = [St]. If equal to [s] then (†) : 0 = 0 and
otherwise (†) : 0= 0.

• If X t−1 /∈ Zπ and Zt ∈ Zπ, then [St] and [St−1] can be equal or different. If (1) [St] =
[St−1] = [s], we have (†) : −1 = −1; If (2) [St] = [St−1] ̸= [s], we have (†) : 0 = 0; If
(3) [St] = [s] ̸= [St−1], we have (†) : −1 = −1; And if (4) [St] ̸= [s] = [St−1], we have
(†) : 0= 0.

So (†) is established the quasi-flow property follows immediately.
Introduceπ′t the policy of [M] as any state-wise probability distribution with E[N ′t [s]]π

′
t(a|[s]) =

E[N ′t ([s], a)], which is uniquely defined when E[N ′t [s]]> 0. For all [s′] ∈ S [M], we have:

∑

z≡([s],a)∈Z [M]

µt[s]π
′
t(x |[s])p([s

′]|x) =
∑

z≡([s],a)∈Z [M]

E[N ′t [s]]π
′
t(x |[s])

f (t)
p([s′]|x)

=
∑

z /∈Zπ

E[Nt(z)]
f (t)

p([s′]|x)

=
∑

z /∈Zπ

∑

s′′∈[s′]

E[Nt(z)]
f (t)

p(s′′|x)

=
∑

z /∈Zπ

∑

s′′∈[s′]

E[Nt(z)(p(s′′|x)− p̂t(s′′|x))] + E[Nt(z)p̂t(s′′|x)]
f (t)

(Lemma III.16)=
∑

z /∈Zπ

∑

s′′∈[s′]

�

E[Nt+1(z; s′))]
f (t)

+ o
�

1+
E[Nt(z)]

f (t)

��

=
∑

z /∈Zπ

∑

s′′∈[s′]

�

E[Nt+1(z; s′′)]
f (t)

+ o(1)
�

≡
∑

z /∈Zπ

∑

s′′∈[s′]

�

E[N ′t+1(z; s′′)]

f (t)
+ o(1)

�

(quasi-flow property (III.5))=
∑

s′′∈[s′]

�

E[N ′t+1(s
′′)]

f (t)
+ o(1)

�

= µ[s′] + o(1).

This concludes the proof.

8.4 The model dependent lower bound of the regret

We finally have all the material to state and prove the model dependent lower bound.
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Theorem III.5 (Regret lower bound). Let M ∈M . The regret of every strongly consistent
algorithm onM satisfies lim infT→∞ EM[Reg(T )]/ log(T )≥ K(M) where K(M) ∈ [0,∞]
is the solution of the optimization problem:

inf
µ∈Inv(M/Z ∗∗(M))

∑

z∈Z
µ(z)∆∗(z) s.t. ∀M† ∈ Cnf(M),

∑

z∈Z
µ(z)KLz(M ||M†)≥ 1. (III.6)

Proof of Theorem III.5. Consider a consistent algorithm and pick M ∈M .
(STEP 1) If Cnf(M) = ∅, then there are no information constraints and µ := 0Z ∈

Inv(M/Z∗∗(M)) is the optimal exploration measure and the provided lower bound is trivial.
(STEP 2a) Moving on from this special case, assume that Cnf(M) ̸= ∅. By Corollary III.4,

the vector

µT (z) :=
1(z /∈ Z∗∗(M))EM[NT (z)]

EM[
∑

z′ /∈Z∗∗(M)
NT (z′)]

converges to Inv(M/Z∗∗(M))∩P (Z ) when T →∞. Introduce λ(T ) := EM[
∑

z′ /∈Z∗∗(M)
NT (z′)] ·

log−1(T ). By consistency of the algorithm, from Proposition III.1 follows that:

∀M† ∈ Cnf(M),
∑

z∈Z
λ(T )µT (z)KLz

�

M ||M†
�

≥ 1.

Meanwhile, the regret satisfies:

EM[Reg(T )]
log(T )

=
1

log(T )

∑

z∈Z
EM[NT (z)]∆

∗(z, M) =
∑

z∈Z
λ(T )µT (z)∆

∗(z, M).

If the infemum limit of the above quantity is infinite, there is nothing to prove, so assume that it
is finite.

(STEP 2b) We claim the liminf ofψ(T ) := EM[Reg(T )] log−1(T ) =
∑

z∈Z λ∞µ∞(z)∆
∗(z, M)

with µ∞ is a limit point of µT , hence an element of Inv(M/Z∗∗(M))∩P (Z ) and λ∞ <∞.
Indeed, let (Tn) a sequence of times such thatψ(Tn)→ lim infψ(T ). Because Inv(M/Z∗∗(M))∩

P (Z ) is compact, we can assume that µTn
converges to a µ∞ ∈ Inv(M/Z∗∗(M))∩P (Z ) up to

extracting a sub-sequence of (Tn). Now, by construction µT = 0 on Z∗∗(M), hence µ∞ = 0 on
Z∗∗(M) as well and by Lemma III.15, we must have

∑

z /∈Z∗(M)
µ∞(z) = c > 0, i.e., µ∞ puts a

positive mass on sub-optimal pairs. We get:

limsup
n→∞

λ(Tn)c∆
∗
min(M)≤ lim infψ(T )<∞

hence limsupλ(Tn) <∞. So, up to extracting a sub-sequence of (Tn) again, we can assume
that λ(Tn) converges to some λ∞ <∞.

(STEP 2c) We conclude that ν∞ := λ∞µ∞ ∈ Inv(M/Z∗∗(M)) is such that

lim inf
T→∞

EM[Reg(T )]
log(T )

=
∑

z∈Z
ν∞(z)∆

∗(z, M) and ∀M† ∈ Cnf(M),
∑

z∈Z
ν∞(z)KLz

�

M ||M†
�

≥ 1.

This concludes the proof.

The lower bound of Theorem III.5 is tight and in Chapter 10, we present a strongly consistent
algorithm with regret scaling as K(M) log(T). We conclude the section by showing that the
contraction can be dropped in the lower bound.
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Important remark. The quantity K(M) actually depends onM . In general,M is obvious
in the context but whenever it is not, we write K(M ;M ) to make the dependency clear.

8.4.1 From contracted invariant measures to invariant measures

While minors play a central role in the decomposition of the execution of consistent algorithm
(Section 8.3), they can be dropped, slightly simplifying the lower bound and greatly simplifying
the design of optimal planners. In fact, using that ∆∗(z) is null for z ∈ Z ∗∗(M), invariant
measures of the minor M/Z ∗∗(M) represented by invariant measures of the initial model M ,
leading to:

Proposition III.6 (Removing the contraction). The regret lowerbound K(M) is equal to:

K(M) = inf

¨

∑

z∈Z
µ(z)∆∗(z) : µ ∈ Inv(M) and inf

M†∈Cnf(M)

∑

z∈Z
µ(z)KLz(M ||M†)≥ 1

«

.

(III.7)

This is a direct consequence of the following remarkable result.

Lemma III.7. Denote u|Z\Z ∗∗(M) the truncation of u ∈ RZ to pairs of Z \Z ∗∗(M) and extend the
notations to subsets of RZ . Then Inv(M)|Z\Z ∗∗(M) = Inv(M/Z ∗∗(M))|Z\Z ∗∗(M).

Proof. Since Inv(M/Z ∗∗(M)) ⊇ Inv(M), one inclusion is obvious and we focus on the other.
Up to iterating the process on the communicating components of Z ∗∗(M), we assume that
Z0 := Z ∗∗(M) induces a communicating model M |Z0

. Pick [µ] ∈ Inv(M/Z0). We show that
there µ such that [µ](z) = µ(z) for z /∈ Z0. Denote S0 := {s : ∃a, (s, a) ∈ Z0} the states in which
Z0 is rooted. In [M] := M/Z0, we have [p]([S0]|z0) = 1 for all z0 ∈ Z0 so that we can assume
that [µ](z0) = 0 without loss of generality. For s0 ∈ S0, introduce

α(s) :=
∑

a∈A (s0)

[µ](s0, a)−
∑

z∈Z
[µ](z)p(s0|z). (III.8)

Observe that
∑

s0∈S0
α(s0) = 0 since [µ] is an invariant measure of [M]≡ M/Z0. It is enough to

find µ0 ∈ RZ0 such that

µ0 ≥ 0 and ∀s0 ∈ S0,
∑

z0∈Z0

µ0(z0)p(s0|z0) =
∑

a0:(s0,a0)∈Z0

µ(s0, a0) +α(s0); (III.9)

then µ ∈ RZ given by µ(z) = µ0(z) if z ∈ Z0 and [µ](z) if z /∈ Z0 will be solution. Assume that
(III.9) has no solution. By Farkas’ Lemma, there exists ν0 ∈ RS0 such that:

∑

s0∈S0

ν0(s0)α(s0)< 0 and ∀(s0, a0) ∈ Z0,
∑

s′0∈S0

ν0(s0)
�

p(s′0|s0, a0)− 1(s′0 = s0)
�

≥ 0. (III.10)

Let π0 the policy picking its actions uniformly in Z0 from S0. The second condition can be
rewritten as pπ0

(M |Z0
)ν0 ≥ ν0 so by induction, pπ0

(M |Z0
)ν0 ≥ ν0. BecauseZ0 is communicating,

pπ0
(M |Z0

) has full support and ν0 ∈ Re. But
∑

s0∈S0
α(s0) = 0 so

∑

s0∈S0
ν0(s0)α(s0) = 0,

contradicting (III.10).
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8.5 Examples and links to existing results

The statements of the lower bound in its two forms (Theorem III.5 and Proposition III.6) are a
bit dry. In this section, its consequences are investigated and we discuss links with the existing
literature. We explore how the informational constraints can be decomposed, and how the
structure of the minor M/Z ∗∗(M) tells how easy exploration may conceptually be.

8.5.1 Example: Multi-armed bandits

Recall that multi-armed bandits are nothing less than state-less Markov decision processes, with
pair space of the form Z = {1} × {1, . . . , A}. LetM the space of all Markov decision processes
with Bernoulli rewards and pair space Z and fix M ∈M .

An optimal policy is a choice of optimal action (or arm), and the gain of a policy π(1) = a is
equal to r(a)≡ r(1, a) and the Bellman gap of z ∈ Z is ∆∗(z) = g∗(M)− r(z). Any contraction
of a multi-armed bandit is a multi-armed bandit hence Inv(M/Z ∗∗) = RZ+ . Moreover, confusing
models M†) are precisely models such that ∃z /∈ Z ∗∗ such that r†(z) > maxz′ r(z′) = g∗(M).
Combined, Theorem III.5 can be rewritten as:

K(M ;M ) = inf

¨

∑

z∈Z
µ(z)∆∗(z; M) : µ ∈ RZ+ and ∀M† ∈ Cnf(M),

∑

z∈Z
µ(z)kl(r(z)||r†(z))≥ 1

«

.

Now, remark that any M† ∈ Cnf(M) can be changed into a M‡ ∈ Cnf(M) where M and M‡ only
differ at one pair (the suboptimal pair of M that is made optimal in M‡). Using the continuity of
the function r†(z) 7→ kl(r(z)||r†(z)) on (0, 1), we retrieve closed form of the regret lower bound
of Lai and Robbins (1985):

K(M ;M ) =
∑

z∈Z

∆∗(z; M)
kl(r(z)||max(r))

. (III.11)

We also retrieve the interior condition “r < 1”. Obviously, we have restricted the analysis
to Bernoulli rewards models, but this result could be generalized to more general reward
distributions because the technique does not really rely on the Bernoulli nature of reward
distributions. For more general lower bounds on multi-armed bandits, see Honda and Takemura
(2015) for example.

Several observations can be made regarding (III.11).

(1) The regret lower bound has a closed-form expression that can easily be evaluated.
(2) Exploration constraints are trivial in multi-armed bandits (i.e., Inv(M/Z ∗∗) = RZ+ ).
(3) Information constraints are pair-wisely decoupled (indexed) and are equivalent to |Z |

linear constraints on µ, all of the form µ(z)≥ (kl(r(z)||max(r)))−1.

The properties (1-3) are not always satisfied. As a matter fact, (1) and (3) can break by
considering K(M ;M ′) forM ′ ⊊M (structured bandit problems). Meanwhile, (2) only depends
on M rather thanM . All together, these properties are arguably what makes multi-armed bandits
significatively easier to learn than Markov decision processes. However, multi-armed bandits
are not the only classes of model spaces with such properties.

8.5.2 Example: (Optimally) Recurrent models, or navigation-free models

The property (2) above, stating that Inv(M/Z ∗∗) = RZ+ , only depend on M and makes it
navigation-free models, because the minor M/Z ∗∗ is a bandit. Such models are those such that
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once the planner has correctly identified Z ∗∗, navigating the environment causes no trouble
anymore, because any state can be reached from any other with zero cost. This motivates the
definition below.

Definition III.5. We say that a model M is optimally recurrent if there exists a gain optimal
policy π∗ whose recurrent state is S , or equivalently, if Z ∗∗(M) covers all the states of M.

By definition, M is optimally recurrent if, and only if M/Z ∗∗ is state-less. For instance,
ergodic models are optimally recurrent. The navigation and information constraints can be
heavily simplified when the model is optimally recurrent. Given M ∈M an optimally recurrent
model and (s, a) ∈ Z−(M), denote:

C(M , s, a) := inf
r̃s,a,p̃s,a

�

KL
�

rs,a∥r̃s,a

�

+ KL
�

ps,a∥p̃s,a

�

: r̃(s, a) + p̃(s, a)h∗ > g∗(s) + h∗(s)
	

(III.12)

where g∗ and h∗ are respectively the optimal gain and bias vectors of M .

Proposition III.8 (Lower bound for optimally recurrent models). Assume thatM the
space of all models with state-action space Z . If M ∈M is an optimally recurrent model,
then K(M) is equal to:

K(M) =
∑

(s,a)/∈Z ∗∗(M)

∆∗(s, a)
C(M , s, a)

. (III.13)

In particular, when M ∈M is an optimally recurrent model, then the navigation constraints
become trivial (µ ∈ RZ+ ) and the information constraints are decoupled along sub-optimal pairs.
This bound strictly generalizes the work of Agrawal et al. (1988); Burnetas and Katehakis (1997)
that where specific to ergodic models. It also generalizes (III.11).

Proof. When M is optimally recurrent, M/Z ∗∗(M) is a single-state Markov decision process,
hence Inv(M/Z ∗∗(M)) = RZ+ meaning that the navigation constraints are trivial. We now
simplify the information constraints using a policy improvement argument which is similar to
Burnetas and Katehakis (1997). Let π∗ ∈ Π∗(M) with recurrent class S and pick a confusing
model M† ∈ Cnf(M). We have (s,π∗(s)) ∈ Z ∗∗(M) for all s ∈ S , and because M and M†

coincide on Z ∗∗(M), it follows that the gain, bias, reward and kernel of π∗ are preserved in
M†. Yet π∗ is not gain-optimal in M†, hence is not Bellman optimal in M† (Proposition I.4).
Accordingly, there must exists (s, a) ∈ Z such that:

r†(s, a) + p†(s, a)h∗(M)> g∗(s, M) + h∗(s, M).

Meanwhile, all states are recurrent under π∗ which is optimal in M , hence (1) Z ∗∗(M) =Z ∗(M)
and (2) it is a fixpoint of the Bellman operator of M , in particular r(s, a) + p(s, a)h∗(M) ≤
g∗(s, M) + h∗(s, M). By (1), M and M† coincide on Z ∗(M) so invoking (2), we must have
(s, a) /∈ Z ∗(M). In the end, we obtain:

K(M) = inf

¨

∑

z∈Z
µ(z)∆∗(z) : µ ∈ RZ+ and ∀(s, a) ∈ Z−(M), µ(s, a)C(M , s, a)≥ 1

«

of which the solution is obvious.

We recover a regret lower-bound that is in closed form, navigation free and with pair-wisely
decoupled information constraints. In other words, the regret lower bound of optimally recurrent
models is morally the same than than bandits’. Although the regret lower bound is navigation
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free, the model itself is not navigation free because not every policy is recurrent, and an efficient
planner has to be careful of that fact. If the model is recurrent however, then all states are
visited independently of the chosen actions. This makes recurrent models essentially similar to
bandits, and the design of efficient planners essentially similar in the two model classes.

On a side note, efficient planners for recurrent model are harder to design than those for
bandits, because the Bellman equations is differently complex on the two classes. For bandits, the
optimal bias vector is h∗ = 0. Although gain and bias optimalities coincide when M is recurrent,
the optimal bias vector is non-trivial and the Bellman gaps depend on the bias. Correctly
estimating the bias requires a careful technique and carelessly trying to estimate h∗ with few
data can lead to disastrous performance. Therefore, although the planners provided by Burnetas
and Katehakis (1997) and Pesquerel and Maillard (2022) (IMED-RL) are indexed algorithms
that are reminiscent of known planners for stochastic bandits (respectively Lai and Robbins
(1985) and Honda and Takemura (2015) (IMED)), they make use of specialized mechanisms
to estimate the optimal bias function and their analysis is more intricate than their bandit
analogues.

8.5.3 Example: Fixed kernel spaces

In this last paragraph, we detail what insight can the lower bound of Theorem III.5 provide in
the setting investigated by Ortner (2010); Saber et al. (2024); Tranos and Proutiere (2021):
Deterministic transition models and more generally models where the kernel is known.

Definition III.6. Fix a pair space Z . A model spaceM ∈M(Z ) is called a fixed kernel space if
all elements ofM have the same transition kernel, i.e., ∀M , M ′ ∈M , p = p′. We say that it is
deterministic kernel space if, in addition, p(s′|s, a) ∈ {0,1} for every transition triplet (s, a, s′).

For deterministic kernel space, (Tranos and Proutiere, 2021, Theorem 1) provided a model
dependent lower bound, that already make apparent the information and navigation constraints
in a form that are similar to Theorem III.5, although the objective function is written differently.
In our set of notations, their result is the following.

Theorem III.9 (Tranos and Proutiere (2021)). LetM a deterministic kernel space. Then
K(M ;M ) is at least:

inf

¨

∑

z∈Z
µ(z)(g∗ − r(z)) : µ ∈ Inv(M) and inf

M†∈Cnf(M ;M )

∑

z∈Z
µ(z)KL(M(z)||M†(z))≥ 1

«

.

(III.14)

This lower bound is a special case of the one provided in Theorem III.5, because

∑

z∈Z
µ(z)(g∗ − r(z))

(∗)
=

∑

(s,a)∈Z

µ(s, a)(∆∗(s, a) + (p(s, a)− es)h
∗)

=
∑

z∈Z
µ(z)∆∗(z) +

∑

s′∈s

h∗(s′)
∑

(s,a)∈Z

µ(s, a)p(s′|s, a)−
∑

s∈S
h∗(s)

∑

a∈A (s)

µ(s, a)

(†)
=
∑

z∈Z
µ(z)∆∗(z) +

∑

s′∈S

h∗(s′)
∑

a∈A (s′)

µ(s′, a)−
∑

s∈S
h∗(s)

∑

a∈A (s)

µ(s, a)

=
∑

z∈Z
µ(z)∆∗(z)

where (∗) follows from the Poisson equation and (†) uses that µ ∈ Inv(M).
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However, Tranos and Proutiere (2021) is specific to deterministic kernel spaces and do not
provide general tightness guarantees of their lower bound (only on special instances). Still
for deterministic spaces, Ortner (2010) provide a variant of UCRL2, named UCYCLE, with sub-
optimal regret guarantees of order O(log(T )). In the broader setting of fixed kernel spaces, the
recent Saber et al. (2024) tries to go closer to the lower bound with IMED-KD, a strategy based
on IMED, but this work does not aim at quantifying the gap between their regret guarantees
and the regret lower bound; Actually, no lower bound where available for their setting upon
publication. Their algorithm, however, tries indeed to track a lower bound. In an episodic
manner, IMED-KD checks if it lacks information somewhere by considering every policy in a
small pool of policy candidates Πτ. For every policy in Πτ, IMED-KD computes an index inspired
from IMED Honda and Takemura (2015) that quantifies the likelihood that this policy is better
than the current empirically optimal policy (up to rescaling), from which an informative policy
is computed. The role of this policy is to gather the estimated missing information quickly. This
policy is iterated until the algorithm considers that enough information has been gathered, then
switches back to exploiting the current empirically optimal policy.

Two ideas are essential in the design of IMED-KD.

(1) The alternative set can always be decomposed policy-wise, by writing:

Alt(M) =
⋃

π/∈Π∗(M)

�

M† ∈ Alt(M) : π ∈ Π∗(M†)
	

.

Hence, one can check that enough information has been gathered on M by checking that
enough information has been gathered for every sub-optimal policy. This decomposition
is not specific to fixed kernel spaces, and in general, to every policy π, one can associate a
most confusing model that is the harder to reject such that π is optimal. Yet, when the
kernel is fixed, finding this most confusing model is much easier, making indexed planners
like IMED-KD computationally affordable.

(2) There are too many policies. Checking that enough information has been gathered for
every sub-optimal policy is difficult a priori, because |Π| is exponentially large, hence
the introduction of the policy pool Πτ of “good” candidate policies. Saber et al. (2024)
discusses how this pool may be chosen.

Overall, the design of IMED-KD takes into account a concern that we so far have dismissed:
The tractability of the lower bound. This is the subject of the next chapter.



Chapter 9

Intractability of the lower bound

In this chapter, we discuss the computational difficulties related to the regret lower bound
K(M ;M ) of Theorem III.5. Recall that it is given as the solution of the optimization problem:

inf
µ∈Inv(M/Z ∗∗)

∑

z

µ(z)∆∗(z; M) such that inf
M†∈Cnf(M)

∑

z

µ(z)KL(M(z)||M†(z))≥ 1.

While the objective function is linear, the constraints are non-convex in general. In this chapter,
we show that if the model space is discrete, the optimal value is computationally hard.

9.1 CRITICAL-MODEL: A NP-complete problem

A simple question that arises from the regret optimization problem (III.6) is, given a measure µ,
is it easy to check the condition ∀M† ∈ Cnf(M),

∑

z µ(z)KL(M(z)||M†(z))≥ 1? The answer is no:
The problem is coNP difficult, see the problem CRITICAL-MODEL thereafter. This problem is a
sub-problem that asymptotically optimal planners must indirectly solve, in order to determine
whether they lack information or not. This problem appears in the design of the nearly optimal
algorithm provided in the next chapter.

CRITICAL-MODEL: Given a space of MDPsM , a reference model M ∈M and a pair of
scalars α,β ≥ 0, is there a M† ∈M such that:

∑

z

µ(z)KL(M(z)||M†(z))< α and g∗(M†)> β , (III.1)

where µ is an invariant probability measure of M?

To be formal, we have to specify how a space of MDPs may be fed to an algorithm. If
M has polynomial number of models, and every element of it has polynomial size, then the
enumeration ofM is polysized – but in this kind of setting, one can show that CRITICAL-MODEL
is P. Therefore, we have to focus on spacesM that cannot be enumerated in polynomial time.
We assume that M is given by its state-action space, as well as a polynomially many linear
constraints on its kernel and rewards. Then, we have the following result:

Theorem III.10. CRITICAL-MODEL is NP-complete.

Notation. In the proof below, we write KLM ||M ′(z) for KL(M(z)||M ′(z)).
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Proof. Proving that it is NP is not a problem, because the optimal gain of a MDP is the solution
of a linear program, and so is its invariant measure Puterman (1994).

(STEP 1) To prove that the problem is NP-hard, it is reduced from the Knapsack Problem
(KP). Recall that an instance of KP is given by a collection of n items of integer values {v1, . . . , vn}
and integer weights {w1, . . . wn}, as well as a capacity W and a value threshold V , both integers.
The problem is to determine whether there exists K ⊆ [n] such that

∑

k∈K wk ≤ W and
∑

k∈K vk ≥ V .
Fix ε,σ,δ > 0 to be tuned later on. Given an instance of KP, consider the MDPM whose

structure is given by n (CHOOSE k) widgets connected in a ring fashion.

CHOOSE k

PICK k

SKIP k

CHOOSE

k+ 1 mod n

N(δ,σ
2
k
)$ 1− ε

ε

N(0,σ2
k )$ 1

2

1
2

N(vk , 0)$

N(0,0)$

Figure 9.1.1: The (CHOOSE k) widget, where σ2
k := σ2

wk
.

From the state (CHOOSE k) are two actions: The top action that is likely to go to (PICK k)
that shall be referred to as action PICK, and the bottom action called SKIP. From every over state,
there is a single action that denoted ∗. A (deterministic) policy ofM is analogue to a subset
K ⊆ {1, ..., n}, written πK , which is given by πK (PICK|CHOOSE k) := 1(k ∈K ). We get:

g(πK ) =
1

2n

�

1
2

n
∑

k=1

vk +
∑

k∈K

��

1
2 − ε

�

vk +δ
�

�

=
∥v∥1

4n
+

1
2n

∑

k∈K

��

1
2 − ε

�

vk +δ
�

. (III.2)

(STEP 2) Every policy πK can equivalently be seen as a single-action Markov decision process
MK , i.e., the model of a policy over the state-space

S := {(CHOOSE k), (PICK k), (SKIP k) : k = 1, . . . , n}.

The choice of an action is equivalently the choice of a kernel distribution. The set of stationary
deterministic policies of M , denoted ΠMD(M ), can therefore be seen as the set of Markov
reward processesMMD := {MK : K ⊆ {1, . . . , n}}. Provided that the parameters ε,σ,δ are
polynomial in n, v, w, this (structured) set of mdps is described in polynomial size in n, v, w.

Consider M∅ ∈MMD. BecauseMMD is a space of single-action MDPs, we don’t make any
distinction between a state and a pair of MK ∈MMD. Now, we see that g(M∅) =

∥v∥1
4n and the

invariant measure µ of the unique policy of M∅ is:

µ(CHOOSE k) = 1
2n and µ(PICK k) = µ(SKIP k) = 1

4n .

Moreover, check that for K ⊆ {1, . . . , n}, the only states such that KLM∅∥MK (s) ̸= 0 are (CHOOSE

k) states, with:

KLM∅∥MK (CHOOSE k) = 1(k ∈K )
�

log
�

1
4ε(1−ε)

�

+wk

�

δ
σ

�2�

.

Hence:
∑

z

µ(z)KLM∅∥MK (z) =
1

2n

∑

k∈K

�

log
�

1
4ε(1−ε)

�

+wk

�

δ
σ

�2�

.

(STEP 3) We want (1) to be able to retrieve the value of
∑

k∈K vk from g(MK ); (2) to be
able to retrieve the value of

∑

k∈K wk from
∑

z µ(z)KLM∅∥Mk
(z). For simplicity and because it

will eventually work with it, fix ε≡ 1
4 .
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The condition (1) holds when δ = 1
16n . Indeed, then:

g(MK ) =
∥v∥1

4n
+

1
8n

∑

k∈K

(vk + 4δ)

=
1

8n

�

2∥v∥1 +
∑

k∈K

vk ±
1
4

�

where ±1
4 denotes an arbitrary quantity in the range of [−1

4 , 1
4]. Rearranging, we get

∑

k∈K vk =
8ng(MK )−2∥v∥1±

1
4 = [8ng(MK )−2∥v∥1] where [λ] denotes the rounding operation (nearest

integer).
The condition (2) is satisfied when

σ2 =
δ2

4n log
�

1
4ε(1−ε)

� ≡
1

1024n3 log
�

4
3

� .

Indeed, then we have
∑

z

µ(z)KLM∅∥MK (z) =
1

2n

∑

k∈K

�

log
�

1
4ε(1−ε)

�

+wk

�

δ
σ

�2�

=
δ2

2nσ2

∑

k∈K

�

wk +
1

4n

�

=
δ2

2nσ2

�

∑

k∈K

wk ±
1
4

�

.

Rearranging, we find
∑

k∈K wk = [
2nσ2

δ2

∑

z µ(z)KLM∅∥MK (z)] where [λ] also denotes the round-
ing operation.

(STEP 4) Remark that this choice of ε,σ,δ is polynomial in the size of n. Following
this remark, it should be clear that MMD can be encoded in polynomial size.1 Finally set
α = 2 log(4/3)(W + 1

3) and β = 1
8n(2∥v∥+ V ). Then, we claim that there is M† ∈MMD such

that
∑

z

µ(z)KL(M(z)||M†(z))≤ α, and g∗(M†)≥ β (III.3)

if, and only if the KP instance (v, w, V, W ) has a solution.
This is just a commodity to check using the formulas established so far. If the KP instance

has solution K , then MK is by construction a solution of (III.3), because
∑

z

µ(z)KL(M(z)||M†(z)) =
δ2

2nσ2

∑

k∈K

�

wk +
1

4n

�

≤ 2 log
�

4
3

�

�

W + |K |4n

�

< α

and

g(MK ) =
1

8n

�

2∥v∥1 +
∑

k∈K

�

vk +
1

4n

�

�

>
1

8n
(2∥v∥1 + V ) = β .

Conversely, if Mk is a solution of (III.3), then we have

α= 2 log
�

4
3

��

W + 1
3

�

≥
δ2

2nσ2

∑

k∈K

�

wk +
1

4n

�

≥ 2 log
�

4
3

�

∑

k∈K

wk

hence
∑

k∈K wk ≤W + 1
3 , so

∑

k∈K wk ≤W ; and similarly

β =
1

8n
(2∥v∥+ V )≤

1
8n

�

2∥v∥+
1
4
+
∑

k∈K

vk

�

so
∑

k∈K vk ≥ V − 1
4 , so

∑

k∈K vk ≥ V .
1If you are not convinced, just check that you can efficiently generate MK on your computer.
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9.2 REGRET: Checking solutions is co-NP-hard

With the problem CRITICAL-MODEL being NP-complete, it does not sound good for the tractabil-
ity of the regret bound, because computing it is essentially harder than CRITICAL-MODEL.
Remark that the intractability of CRITICAL-MODEL does not prove the intractability of the
regret lower bound. If µ,α,β are close to the values corresponding to the solution of regret
optimization problem, is the problem still difficult? Yes, and computing the regret is difficult.

REGRET: Given a space of MDPsM , a reference model M ∈M and a scalar ρ ≥ 0, does
there exists a µ ∈ Inv(M/Z ∗∗(M)) such that

∑

z∈Z
µ(z)∆∗(z; M)≤ ρ and inf

M†∈Cnf(M ;M )

∑

z∈Z
µ(z)KL(M(z)||M†(z))≥ 1? (III.4)

We have the following result.

Theorem III.11. Checking a solution of REGRET is co-NP complete.

Proof. We provide a reduction from the co-Knapsack problem (co-KP), which is coNP-complete
because KP is NP-complete. An instance of co-KP is given by a collection of n items of integer
values {v1, . . . , vn} and integer weights {w1, . . . , wn}, as well as a capacity and a value threshold
V , both integers. The problem is to determine if, for all K ⊆ [n], we either have

∑

k∈K wk ≥W
or
∑

k∈K vk ≤ V .
The reduction is very similar to CRITICAL-MODEL’s. Fix ε,σ,δ,θ to be tuned later on and

consider an instance of co-KP. Consider the MDPM whose structure is as given by Figure 9.2.1.

0

1

2

n

kN(θ , 0)

N(0, 0)

CHOOSE k

PICK k

SKIP k

CHOOSE

k+ 1 mod n

N(δ,σ
2
k
) 1− ε

ε

N(0,σ2
k ) 1

2

1
2

N(vk , 0)

N(0, 0)

Figure 9.2.1: Embedding a knapsack problem in a Markov decision process.

The change regarding the reduction of CRITICAL-MODEL is the state (0), in between
(CHOOSE n) and (CHOOSE 1). From (0) you can either loop with the action LOOP scoring
θ , or go to (CHOOSE 1) with the action CYCLE scoring 0, hence entering the big cycle. The
state (0) is a special state. From the state (CHOOSE k) are two actions: The top action that
is likely to go to (PICK k) that we shall refer to as action PICK, and the bottom action that
we shall call SKIP. From every over state, there is a single action that denoted ∗. The special
policy looping on (0) is denoted π∗ and will model the optimal policy later on. The other
(deterministic) policies ofM are analogue to a subsetK ⊆ {1, ..., n}, written πK , and are given
πK (PICK|CHOOSE k) := 1(k ∈K ) with π(CYCLE|0) = 1. We get:

g(πK ) =
1

2(n+ 1)

�

1
2

n
∑

k=1

vk +
∑

k∈K

��

1
2 − ε

�

vk +δ
�

�

=
∥v∥1

4(n+ 1)
+

1
2(n+ 1)

∑

k∈K

��

1
2 − ε

�

vk +δ
�

.

(III.5)
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Every policy πK can equivalently be seen as a single-action Markov decision process MK .
The choice of an action is equivalently the choice of a kernel distribution. The set of stationary
deterministic policies of M , denoted ΠMD(M ), can therefore be seen as the set of Markov
reward processesMMD := {MK :K ⊆ {1, . . . , n}}. Now, we see that g(M∅) =

∥v∥1
4(n+1) and the

invariant measure µ∅ of the unique policy of M∅ is:

µ∅(0) =
1

n+1 , µ∅(CHOOSE k) = 1
2(n+1) , and µ∅(PICK k) = µ∅(SKIP k) = 1

4(n+1) .

Moreover, check that:

∑

z

µ∅(z)KLM∅∥MK (z) =
1

2(n+ 1)

∑

k∈K

�

log
�

1
4ε(1−ε)

�

+wk

�

δ
σ

�2�

.

We find the values:

ε=
1
4

, δ =
1

16n
, σ2 =

δ2

4(n+ 1) log
�

4
3

� , θ =
2∥v∥1 + V
8(n+ 1)

, and ρ =
V

16 log
�

4
3

�

W
.

ConsiderMMD
∗ the copy of MMD with each element augmented with the action LOOP at 0, scoring

N(θ , 0) and pick the reference model M∅ ∈MMD (In abuse of notations, we write the elements
ofMMD andMMD

∗ similarly because the two sets are obviously isomorphic, so M∅ contains the
policies π∅ and π∗). We show that the initial co-KP problem is reduced to the REGRET instance
(MMD

∗ , M∅,ρ).
First, remark that π∗ is the optimal policy of M∅. Then, We show that given µ ∈ Inv(M∅/Z ∗∗)

such that
∑

z µ(z)∆
∗(z; M∅)≤ ρ, we have

(1)
∑

k∈K vk ≤ V if, and only if g(MK )> θ , i.e., MK ∈ Cnf(M∅;MMD
∗ ); and

(2)
∑

k∈K wk ≥W if, and only if
∑

z µ(z)KLM∅∥MK (z)≥ 1.

We start with (1). If
∑

k∈K vk ≤ V , then

g(πK )>
∥v∥1

4(n+ 1)
+

V
8(n+ 1)

= θ .

Conversely, if g(πK )> θ , then

2∥v∥1 + V
8(n+ 1)

<
1

8(n+ 1)

�

2∥v∥1 +
∑

k∈K

�

vk +
1

4n

�

�

≤
2∥v∥1 +

1
4 +

∑

k∈K vk

8(n+ 1)
,

so
∑

k∈K vk ≥ V − 1
4 , so

∑

k∈K vk ≥ V .
For (2), first remark that the only positive Bellman-gap of M∅ is at the state-action pair

(0,CYCLE) with ∆∗((0,CYCLE); M∅) =
V
8 . Moreover, every element of Inv(M∅/Z ∗∗) is of the

form cµ∅ where c > 0. So, having
∑

z µ(z)∆
∗(z; M∅) ≤ ρ means that µ = cµ∅ with c ≤ 8ρ

V =
(2 log(4

3)W )
−1. With this in mind, if

∑

k∈K wk ≥W , then

∑

z

µ(z)KLM∅∥MK (z) =
cδ2

2(n+ 1)σ2

∑

k∈K

�

wk +
1

4n

�

≥
2 log

�

4
3

�

W

2 log
�

4
3

�

W
≥ 1.

Conversely, if
∑

z µ(z)KLM∅∥MK (z)≥ 1, then

1≤
cδ2

2(n+ 1)σ2

∑

k∈K

�

wk +
1

4n

�

≤
2 log

�

4
3

�

�

∑

k∈K wk +
|K |
4n

�

2 log
�

4
3

�

W



Chapter 9. Intractability of the lower bound 129

so
∑

k∈K wk ≥W − 1
4 , so

∑

k∈K wk ≥W .
We readily obtain that: “every K ⊆ [n] satisfies either

∑

k∈K wk ≥W or
∑

k∈K vk ≤ V ” is
equivalent to µ≡ (2W log(4

3))
−1µ∅ satisfying:

∀M† ∈ Cnf(M∅;MMD
∗ ),

∑

z

µ(z)KLM∅∥MK (z)≥ 1,

and this µ is the unique µ ∈ Inv(M∅/Z ∗∗) such that
∑

z µ(z)∆
∗(z; M∅) = ρ.

9.3 Discussion of the result

If we focus on convex model classes, the proof of intractability fails. The previous reduction
doesn’t work anymore, because by taking the convex hull ofMMD, we obtain a space that is very
close to the space of randomized policies ofM instead of deterministic ones, which is essential
in the proof. Also, the rational relaxed Knapsack problem is a linear program, so is solvable in
polynomial time – but the optimization problem related toMMR is not exactly the relaxation of
the reduced KP, hence we cannot easily claim that K(M ;Conv(MMD)) is tractable. It is only
natural to raise the following question.

Open problem. IfM is convex,a does REGRET remain computationally difficult?

ae.g., a polyhedron.

I conjecture that it is even harder, but then the problem must be reduced to smooth compu-
tational problems.

Remark that for many model classes, K(M ;M ) is tractable. This is the case ifM is a space
of bandit or, more generally, a space of optimally recurrent models (see Definition III.5). If
M is a fixed kernel space, then infM†∈Cnf(M ;M )

∑

z µ(z)KL(M(z)||M†(z)) is a convex function of
µ as the infemum of linear functions. This infemum is then computed with gradient descent,
because Cnf(M ;M ) is a half space and the objective function is convex in M† whenM is a fixed
kernel space. However, when optimizing in µ, one must minimize a linear function subjected to
concave constraints. Such problems are hard in general, because their dual problems correspond
to convex maximization subjected to linear constraints. However, approximating the solution
may be possible. This is left for future work.



Chapter 10

ECoE: A nearly asymptotically
optimal algorithmic scheme

In Chapter 9, we have shown that the lower bound provided by Theorem III.5 is intractable
in general. Disregarding any concern of computability, is the bound even tight? Is there a
consistent algorithm achieving a regret upper bound that matches the lower bound? The answer
is: Yes.

10.1 The Exploration-CoExploration-Exploitation trilemma
and ECoE

The algorithm is inspired from the lower bound. One of the important takeaways of the lower
bound is that exploration must be randomized, or behave like a randomized policy in the long
run at least. One of the noticeable gamble of the lower bound is the assumption that the planner
will be able to have nearly perfect information uniformly on Z ∗∗. It is by no means obvious. In
many models, Z ∗∗ is split into several components and sub-optimal pairs must be played to go
from one component to another. For instance, in the literature on minimax regret (see Part II),
most algorithms reduce their number of episodes to amortize the cost endured by switching
policies. Yet, the lower bound of Theorem III.5 dismisses this extra navigational difficulty.

Perhaps one of the most important takeaways of what is to come downstream, is that this
switching cost is not due to exploration. Exploration is about visiting sub-optimal pairs to make
sure that optimal pairs are correctly guessed, and is embodied by the exploration measure µ
that appears in (III.7). This exploration measure is generally fully supported, hence corresponds
to an invariant measure of a unique and fully supported randomized policy, that we call the
exploration policy. By being fully supported, this policy is recurrent and induces no “switching
cost” upon playing. Switching costs are due to something else. It cannot be exploitation either,
because exploitation is about iterating the optimal policy, and by definition this never increases
the first order regret (unless the optimal policy is wrongly guessed, but this is another matter).

Switching costs are due to something in between exploration and exploitation, that we
refer to as co-exploration. Co-exploration is about visiting, or traveling to, a recurrent class
of optimal pairs over which information is estimated to be lacking. Actually, the current lower
bound (III.7) claims that the cost due to co-exploration is sub-logarithmic, hence asymptotically
negligible. Hence co-exploration must be managed by a dedicated mechanism, whose purpose
is to make sure that enough information is gathered (uniformly enough) on Z ∗∗. Upon co-
exploring, optimal pairs are played not to score maximally, but rather because of the possibility
that they are wrongly estimated.

130
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This Exploration-CoExploration-Exploitation trichotomy is new and specific to Markov
decision processes. Following this observation, we suggest the algorithmic scheme ECoE to
learn optimally.

Algorithm III.1 The ECoE framework.
1: for episodes k = 1,2, . . . do
2: Estimate optimal pairs Z ∗∗t out of observations;
3: Update exploitation π+t and exploration π−t policies;
4: if St is not recurrent under π+t or lacking information on Z \Z ∗∗t then
5: Explore with π−t one step; ▷ Vanilla exploration
6: else if lacking information on Z ∗∗t then
7: if one component Z c

t of Z ∗∗t is critically sub-visited and St /∈ S (Z c
t ) then

8: Explore with π−t one step; ▷ Exploration triggered by co-exploration
9: else

10: CoExplore with π+t until regeneration; ▷ Exploitation triggered by co-exploration
11: end if
12: else
13: Exploit with π+t until regeneration; ▷ Vanilla exploitation
14: end if
15: end for

All the components are intentionally evasive and will be made precise in time. What
Algorithm III.1 does is the following. First, it estimates the optimal pairs to compute good
exploitation and exploration policies by approximating the solution of (III.7). Then, it goes
through a few tests to decide whether it should explore, co-explore or exploit. It tests first if
exploration is mandatory, in which case it uses the exploration policy obtained by estimating the
regret lower bound (Theorem III.5). Otherwise, if co-exploration is mandatory, the algorithm
behaves differently depending on whether information is lacking on the current recurrent class
of optimal pairs or on another. If it is another recurrent class, it tries to travel to it using
the exploration policy; otherwise it exploits using the exploitation policy. Otherwise, enough
information has been gathered and the algorithm uses the exploitation policy. Remark that the
blue block could be removed, because the algorithm does the same thing when it coexplores
and when it exploits. In fact, co-exploration and exploitation are similar from a behavioral
viewpoint, but are motivated by very different reasons. The distinction is crucial to the analysis
of Algorithm III.1.

We now detail the components of Algorithm III.1.

10.2 Discontinuity of the lower bound

At the beginning of every episode, ECoE estimates the optimal pairs and the exploration policy
by approximating the lower bound (III.7). But there is a major issue.

The lower bound K(M ;M ) is intrinsically discontinuous in M .

inf
µ∈Inv(M/Z ∗∗(M))

∑

z∈Z
µ(z)∆∗(z) s.t. ∀M† ∈ Cnf(M),

∑

z∈Z
µ(z)KLz(M ||M†)≥ 1. (III.6)

The first discontinuity comes from the objective function µ 7→
∑

z µ(z)∆
∗(z, M), because the

coefficients∆∗(z, M) are not everywhere continuous with respect to M . The second and third dis-
continuities come from the discontinuity of Z ∗∗(M) with respect to M , making Inv(M/Z ∗∗(M))
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and Cnf(M) discontinuous. In other words, the objective function, the navigation and in-
formation constraints are all discontinuous in M . Thankfully, the representation result of
Proposition III.6, stating that elements Inv(M/Z ∗∗(M)) can be represented by elements of
Inv(M) removes the difficulties due to navigation constraints. The other discontinuities cannot
be avoided similarly and are addressed by relaxing the notion of optimality held by Z ∗∗(M) to
Z ε∗∗(M) (Section 10.3.1), force the uniformization of exploration measures with Invη(M/Z ε∗∗(M)
(Section 10.3.2), and adapt the notions of confusing models and Bellman gaps to epsilonized
variants Cnfε(M) and ∆ε∗(M) (Section 10.3.1).

We start by explaining the nature of these discontinuities on an example.

Important notations. In the following, we use the notations:

∥M ′ −M∥ :=max
z∈Z

�

∥r ′(z)− r(z)∥∞ + ∥p′(z)− p(z)∥1

�

KL(M ||M ′) :=max
z∈Z

KL(M(z)||M ′(z)).

We further introduce ∥M ′ − M∥∗ := ∥M ′ − M∥ + 1(M ′ ̸∼ M) ·∞ and KL∗(M ||M ′) :=
KL(M ||M ′)+1(M ′ ̸∼ M)·∞, where M ′ ∼ M means that M and M ′ are mutually absolutely
continuous with respect to each other, i.e., ∀z ∈ Z , ∀q ∈ {r, p}, q(z)≪ q′(z)≪ q(z).

So, the regret lower bound presented in Theorem III.5 and reported in (III.6) and (III.7)
present discontinuities, making the estimation of K(M ;M ) difficult if the learner has only access
to a noisy version of M . Although these discontinuities are already present in the multi-armed
bandit setting, they are not much of a big deal in those simpler settings and asymptotically
optimal algorithms such as IMED, KLUCB or TS automatically deal with those discontinuities
without any particular concern. Morally, this is because in bandits and more generally when the
underlying model is recurrent, there isn’t much of a difference between pulling an optimal pair
and pulling a nearly optimal one. Specifically, the Bellman gaps are continuous at such models.
When the underlying model is no more recurrent, the played pairs determine which states
are visited, and discontinuities of Z ∗∗(M) induce discontinuities in the navigation constraints,
i.e., of Inv(M/Z ∗∗(M)). Even though navigation constraints can be changed to Inv(M) via the
representation result of Lemma III.7, it does not change the fact that an efficient planner is
supposed to useZ ∗∗(M) to navigate the model more easily, hence has to tackle the discontinuities
of Z ∗∗(M). An example is provided with Figure 10.2.1.

M1 2
∗

†

‡§ 0.5$

0.5$

0.5$0.1$

⇝ 1,2

∗ † ‡ §

M/Z ∗∗(M)

Mε1 2
∗

†

‡§ (0.5− ε)$

(0.5− ε)$

0.5$0.1$

Figure 10.2.1: An example of discontinuity of the regret lower bound. The displayed transitions
are deterministic and the labels represent the rewards’ means. Optimal pairs are colored in red.

In Figure 10.2.1, we present two models, M and Mε, that are statistically indistinguishable
when ε→ 0. However, the two models exhibit incompatible navigation constraints. On M , there
is a recurrent optimal policy and M/Z ∗∗(M) is single state, hence navigation constraints are
trivial. For Mε however, we have Mε/Z ∗∗(Mε)∼= Mε and the navigation constraints are different.
Moreover, the confusing set show discontinuities at M , since Mε /∈ Cnf(M) but M ∈ Cnf(Mε).
One can show that, forM := {Mα : α ∈ (−0.5, 0.5)} where the reward are Bernoulli, the regret
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lower bounds are:

K(M) =
4

10 kl( 1
10 , 1

2)
and K(Mε) ∼

ε→0

ε

kl(0.5− ε, 0.5)
∼

1
2ε

for ε > 0 (III.1)

so that K is indeed discontinuous at M ≡ M0. Because M and Mε are indistinguishable, when
the underlying model is M , no learner is capable of claiming that the current model is M with
overwhelming confidence. Yet, when one is doubting about whether the model is Mε or M , then
the pairs ∗, † are nearly optimal, hence can arguably be used to navigate the model more easily
while still scoring near optimally. After all, if the true model is a Mε rather than M0, then at some
point ∗ and † will be rejected. From this discussion, we can raise the following observations.

(1) If the optimality of a pair is uncertain, one should consider it optimal; It makes navigation
easier and if the pair is in fact sub-optimal, it will be rejected at some point.

A second observation adds to the list. As mentioned above, on the example provided by
Figure 10.2.1, the space of confusing models displays a discontinuity at ε = 0. This slightly
refines observation (2).

(2) If one keeps track of the lower bound to determine which actions are to be played, one must
address the discontinuities of the space of confusing models (information constraints).

Motivated by this example, we introduce a continuous regularized version of (III.6).

10.3 A continuous regularization of the lower bound

In this section, we overview the construction of the regularized lower bound.

10.3.1 Definitions: near optimal pairs, ε-confusing models and near opti-
mal gaps

The set of optimal pairs Z ∗∗(M) is not continuous in M hence ∆∗(M), Inv(M/Z ∗∗(M)) and
Cnf(M) may be ill-behaved in a neighborhood of M . From a learning viewpoint, this is at first
sight an issue because even if M̂ is arbitrarily close to M , one is not guaranteed to be able
to track the solutions of the optimization problem (III.6) from M̂ alone. To overcome this
problem, we relax (III.6) by changing Z ∗∗(M) for a more stable optimality notion: near-optimal
pairs. A pair is ε-optimal (z ∈ Z ε∗∗(M)) if it may be played infinitely often by some ε-optimal
policy, see (III.2). Based on Z ε∗∗(M), we further epsilonize the notion of confusing model, by
changing the role played by Z ∗∗(M) with Z ε∗∗(M). Following the idea behind confusing models,
an ε-confusing model is M† ≫ M such that M† and M coincide on Z ε∗∗(M) and the optimal
pairs of M† are not all ε-optimal in M , see (III.3). Lastly, we define the ε-gaps as follows. Let
hε∗(M) the supremum bias vector (for the product order) of all the hπ(M) for π ∈ Π satisfying
gπ(M) > g∗(M) − εe, see (III.4). The ε-gaps are then defined using the Bellman equation
associated to (g∗(M), hε∗(M)), see (III.5).

Z ε∗∗(M) := {z ∈ Z : ∃π ∈ Π,∃µ ∈ Inv(π, M) : gπ(M)> g∗(M)− εe,µ(z)> 0} (III.2)

Cnfε(M) :=
�

M†≫ M : M† = M on Z ε∗∗(M) and g∗(M†)> g∗(M)
	

(III.3)

hε∗(s, M) :=max{hπ(s, M) : π ∈ Π such that ∀s, gπ(s; M)≥ g∗(s; M)− ε} (III.4)
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∆ε∗(s, a, M) :=
�

g∗(s, M) + hε∗(s, M)− r(s, a, M)− p(s, a, M)hε∗(M)
�

+1((s, a) /∈ Z ε∗∗(M))
(III.5)

The epsilonized notions Z ε∗∗, Cnfε and ∆ε∗ satisfy many interesting properties. Among many
others, they properly address the discontinuity issues that their analogues Z ∗∗, Cnf and∆∗ suffer
from, as specified by the result below.

Proposition III.12. Let M ∈M a communicating model. There exists C1, C2,ε0 > 0 such
that, for all ε ∈ (0,ε0], if C1∥M ′ −M∥∗ ≤ ε, then

(1) Z ε∗∗(M
′) =Z ε∗∗(M);

(2) ∥∆ε∗(M
′)−∆∗(M)∥∞ ≤ C2∥M ′ −M∥∗;

(3) Cnfε(M ′) = {M†≫ M ′ : M† = M ′ on Z ∗∗(M) and g∗(M†)> g∗(M)}.

Remark that in Proposition III.12, a precision δ > 0 is achieved on a neighborhood of M that
does not depend on ε, provided that ε < ε0. This ε0 is moreover independent of the desired
precision δ > 0, meaning that the continuity of Z ε∗∗ and ∆ε∗ satisfies a cutoff phenomenon and
continuity kicks in independently of ε provided that ε is not too large. The same property will
hold for the uniformized regret lower bound (see Theorem III.13).

10.3.2 Uniformized exploration measures

For navigation constraints, we introduce Invη(M) the space of invariant measure of η-uniform
policies, i.e., policies satisfying π(a|s)≥ η for all (s, a) ∈ Z , where η > 0 is a constant. That is,

Invη(M) :=
⋃

{Inv(π, M) : π ∈ Π and ∀s,∀a ∈A (s),π(a|s)≥ η}. (III.6)

The purpose of this uniformization is to force the optimal exploration µ to be fully supported,
and the associated exploration policy to be η-uniform. By communicativity of the underlying
model, any algorithm exploring with η-uniform policies is guaranteed to cover every pair during
exploration, and this prevents Algorithm III.2 to overfit its exploration policy to the empirical
data, that has a non-negligible probability to be off.

10.3.3 Regularized regret lower bound

The regularized regret lower bound combines a relaxation of the degree of optimality of pairs
by dropping Z ∗∗(M) to Z ε∗∗(M) (Section 10.3.1) with the adapted notions of optimality gaps
and confusing models, to the uniformization of exploration measures (Section 10.3.2) and adds
a strongly convex regularization term to the objective function to make the minimizer unique.

Definition III.7 (Regularized regret lower bound). Fix (ε,η)> 0. The (ε,η)-regularized
regret lower bound for M ∈ M is the solution Kεη(M) ∈ [0,∞] of the optimization
problem:

inf
µ∈Invη(M)

∑

z∈Z
µ(z)∆ε∗(z, M) +η∥µ∥2

2 s.t. inf
M†∈Cnfε(M)

∑

z∈Z
µ(z)KLz(M ||M†)≥ 1. (III.7)
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The regularized optimization problem (III.7) has (1) a unique solution, (2) is eventually a
good proxy for the real optimization problem (III.6) and (3) has interesting continuity properties,
see Theorem III.13 below.

Theorem III.13 (Properties of the regularized lower bound). Assume that the model space
M is in product formM =

∏

z∈Z [0,1]×P (z). The regularized regret lower bound has
the following properties.

(1) The optimization problem (III.7) has a unique solution µεη(M) ∈ Invη(M);
(2) ε 7→ Kεη(M) is non-decreasing, and Kεη(M)→ K(M) when ε,η→ 0 simultaneously;
(3) Assume that M = (r, p) satisfies 0 < r(z) < 1. There exists ε0 > 0 such that, for all
(M ′n) ∈M

N and (εn) ∈ (R∗+)
N with εn ≤ ε0, we have:

Kεn
η (M

′
n)→ K0

η(M) and µεn
η (M

′
n)→ µ

0
η(M) when KL∗(M ′n||M) +

1
εn
∥M ′n −M∥∗→ 0.

An important take-away of this result is that the level of optimality relaxation given by εn
must be large in front of ∥M ′n −M∥∗, meaning that the estimation precision ∥M ′n −M∥∗ and the
suboptimality tolerance εn must vanish at different rates, roughly ∥M ′n −M∥∗ = o(εn).

Important remark. During the proof of Theorem III.13, it is shown that Kεη(M ;M )<∞
for all communicating M and model spaceM , showing on the way that K(M ;M )<∞.

10.4 Asymptotic regret guarantees of ECoE
With the regularized lower bound (Definition III.7) in hand, we can finally provide a complete
description of ECoE. The algorithms works by approximating Z ∗∗(M) by Z ε(t)∗∗ (M̂t) where M̂t
is the model of empirical observations1 and ε(t) is a vanishing sub-optimality tolerance. The
exploitation policy is π+t chosen as the uniform policy on Z ε(t)∗∗ (M̂t), and the exploration policy
π−t as the policy induced by the optimal (regularized) exploration measure reaching Kε(t)η (M̂t)
(see Theorem III.13), for some exploration parameter η > 0. The exploration and co-exploration
are done by generalized log-likelihood ratio tests (similarly to Marjani et al. (2021); Marjani
and Proutiere (2021)) that are carefully truncated to subsets of Z .

The complete pseudo-code is provided with Algorithm III.2.
We have made the use of color to better isolate the three main parts of the algorithm. The

first green block is relative to the algorithm’s exploration and eventually corresponds to the
dominant part of the regret. The second blue block corresponds to co-exyploration, at the
interplay of exploration and exploitation, because the algorithm is iterating the empirically
optimal policy for information purposes. The first and last red block corresponds to exploitation.
A skeleton Zt is used to truncate information tests, and although it is the same skeleton than in
Burnetas and Katehakis (1997); Pesquerel and Maillard (2022), it plays a very different role in
the analysis.

High level overview of the algorithm. The algorithm works by phases k = 1, 2, 3, ... that are
morally very short. At the beginning of a phase, it computes the nearly optimal pairs Z ε(t)∗∗ (M̂t)
and deduces an exploitation policy π+t and an exploration policy π−t . For various reasons, the

1The model of empirical observations is the model M̂t = (Z , r̂t , p̂t) where r̂t(z) := Nt(z)−1
∑t−1

i=0 1(Zi = z)Ri

is the average reward at z and p̂t(s|z) := Nt(z)−1
∑t−1

i=0 1(Zi = z, Si+1 = s) is the average number of observed
transitions to s upon playing z.
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Algorithm III.2 The ECoE algorithm.
Parameters: Exploration uniformization η > 0, ambient spaceM .
Use

Altε(t)(M̂t) :=
�

M̂†≫ M̂t :Z ∗∗(M̂†) ̸⊆ Z ε(t)∗∗ (M̂t)
	

. (III.8)

Use near-optimality threshold ε(t) = 1
log log(t) . Use GLR overshoot δ(t) := 1

log log(t) =ω
�

log log(t)
log(t)

�

.

1: for episodes k = 1,2, . . . do
2: Set tk← t;
3: Update exploitation policy π+tk

: uniform on Z ε(t)∗∗ (M̂t) from S (Z ε(t)∗∗ (M̂t)) and uniform
elsewhere;

4: Update exploration measure µtk
← µε(t)η (M̂t), exploration policy π−tk

(a|s)∝ µt(s, a);
5: Update skeleton Zt ← {z ∈ Z : Nt(z)≥ log2(t)};
6: Update extended skeleton Yt ←Zt ∪Z ε(t)∗∗ (M̂t);
7: if St is not recurrent under π+t then
8: Play At according to π+t (St ,−);
9: t ← t + 1, add t − 1 in T −;

10: else if ∃M† ∈ Altε(t)(M̂t) s.t. M†|Yt
= M̂t |Yt

and
∑

z Nt(z)KLz(M̂t ||M†)≤ (1+δ(t)) log(t)
then

11: Play At according to π−t (St ,−);
12: t ← t + 1, add t − 1 in T −;
13: else if ∃M† ∈ Altε(t)(M̂t) s.t. M†|Zt

= M̂t |Zt
and

∑

z Nt(z)KLz(M̂t ||M†)≤ (1+δ(t)) log(t)
then

14: Split Z ε(t)∗∗ (M̂t) into communicating components Z 1
t , . . . ,Zm(t)

t ;
15: Let Z i(t)

t the current component containing St ;
16: if log min{Nt(z) : z ∈ Z i(t)

t }< 2 logmin{Nt(z) : z ∈ Z ε(t)∗∗ (M̂t)} then
17: Add t ∈ T ±0 ;
18: repeat
19: Play At according to π+t (−|St);
20: t ← t + 1;
21: if St /∈ S (Z

i(t)
t ) then add t − 1 in T ! and break; ▷ transition discovery

22: else add t − 1 in T ±;
23: until St = Stk

; ▷ regeneration
24: else
25: Play At according to π−t (St ,−);
26: t ← t + 1, add t − 1 in T −;
27: end if
28: else
29: Add t in T +0 ;
30: repeat
31: Play At according to π+t (−|St);
32: t ← t + 1;
33: if St /∈ S (Z

i(t)
t ) then add t − 1 in T ! and break; ▷ transition discovery

34: else add t − 1 in T +;
35: until St = Stk

; ▷ regeneration
36: end if
37: end for

EXPLORATION (t ∈ T −)

COEXPLORATION (t ∈ T ±)

EXPLOITATION (t ∈ T +)



Chapter 10. ECoE: A nearly asymptotically optimal algorithmic scheme 137

exploration policy is chosen η-uniform. Then, the algorithm must decides whether (1) it explores,
i.e., plays π−t once to gather information on presumed sub-optimal pairs; (2) it co-explores,
i.e., plays π+t to gain information on a component of the presumed nearly optimal pairs; (3) it
exploits, i.e., plays π+t to score as much as possible.

(0) DEFAULT EXPLORATION: By default, if the algorithm is not on a recurrent component of
Z ε(t)∗∗ (M̂t), it iterates π−t and ends the phase. Otherwise, it goes through a bunch of tests to
decide what to do.

(1) EXPLORATION: It first checks if there is a lack of information on sub-optimal pairs by
running a generalized log-likelihood ratio test (GLR) that is truncated to Z \Z ε(t)∗∗ (M̂t). Morally,
it makes the assumption that the information on nearly optimal pairs is perfect, then does a
classical GLR test. If the test is positive, it iterates π−t once and the phase ends. Otherwise, it
deals with co-exploration.

(2) COEXPLORATION: The idea is to check if there is a lack of information on nearly optimal
pairs. It is done by running a non-truncated GLR test, i.e., the assumption on the perfectness of
information on Z ε(t)∗∗ (M̂t) is dropped and a classical GLR test is ran. If the test is positive, the
algorithm concludes that information is missing on Z ε(t)∗∗ (M̂t) and that these pairs should be
visited more. However, Z ε(t)∗∗ (M̂t) may be split into several communicating components and the
lacking information may be in a component to which the current state does not belong to. The
algorithm does a test based on visit counts to decide whether the current component is worth
co-exploring or if the lack of information is much more likely to come from another component.
In the first case, it iterates π+t until regeneration and ends the phase. In the second case, it
wants to reach a more informationally critical component, and engages a travel by exploring: It
iterates π−t once and the phase ends. The idea is to explore by the meantime, and reconsider
once another component of Z ε(t)∗∗ (M̂t) is reached. If the prior GLR test is negative, the algorithm
deals with exploitation.

(3) EXPLOITATION: The algorithm iterates π+t until regeneration.
(!) PANIC: When the algorithm iterates a policy until regeneration, this regeneration may

never come if the algorithm is wrong about the support of transition kernels. In that case, at
some point, the algorithm will observe a transition (St , At , St+1) it has never seen before. We
call these time-instant panic times, and the algorithm deals with them by killing the current
phase right away.

Theorem III.14. Assume that the model spaceM is in product formM =
∏

z∈Z [0,1]×
P (z). Fix the parameters of Algorithm III.2 to η > 0. For all M ∈M such that 0< r(z)< 1,
the regret of Algorithm III.2 is asymptotically bounded by:

limsup
T→∞

EM[Reg(T )]
log(T )

≤ K0
η(M). (III.9)

For every fixed η > 0, Algorithm III.2 is consistent (because K0
η(M)<∞), see the remark

following Theorem III.13). Since infη>0 K0
η(M) = K(M) by Theorem III.13, this provides a family

of consistent planners ((πηt )t) indexed by η > 0 such that:

∀M ∈M , inf
η>0

limsup
T→∞

E(π
η
t ),M[Reg(T )]

log(T )
= K(M). (III.10)

Accordingly, the regret lower bound of Theorem III.5 is tight.
The proof of Theorem III.14 is difficult and requires many non-standard techniques.
It is deferred to the appendix.
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10.5 Instantiations of ECoE

10.5.1 ECoE for multi-armed bandits

Although Algorithm III.2 is complex, it is rather similar to a blended version of two well-known
methods when instantiated to bandit settings: MED Honda and Takemura (2010) and IMED
Honda and Takemura (2015). First, ifM is a class of bandits, then the co-exploration test may
be ignored because the environment is stateless. In Section 8.5.1, we have shown that in the
bandit setting, we have:

K(M) =
∑

z /∈Z ∗∗

∆∗(z)
kl(r(z)||max(r))

.

So, if ε,η > 0 are small enough, µεη(z; M̂t)≈ kl(r̂t(z)||max(r̂t))−1. Therefore, sub-optimal pairs
are sampled proportionally to 1/kl(r̂t(z)||max(r̂t)), and the visit counts of ECoE track the lower
bound explicitly, which is in spirit similar to what MED does. To decide whether it should explore
or not, the exploration GLR test of ECoE is morally asymptotically equivalent to:

∃?z ∈ Z : r̂t(z)<max(r̂t) and Nt(z)< log2(t) and Nt(z)kl(r̂t(z)||max(r̂t))≤ log(t)

Straight forward computations show that this rule is asymptotically equivalent to checking
if there exists a suboptimal pair such that Nt(z)kl(r̂t ||max(r̂t)) + log(Nt(z)) < log(t), which
is reminiscent of IMED’s index. A version of ECoE specialized for bandits is reported with
Algorithm III.3.

Algorithm III.3 ECoE for bandits.
1: for episodes k = 1,2, . . . do
2: Update Z ε(t)∗∗ (M̂t) := {z ∈ Z : r̂t(z)≥max(r̂t)− ε(t)};

3: Update exploration policy µε(t)η (z; M̂t)≈
1(z /∈Z ε(t)∗∗ (M̂t ))

kl(r̂t (z)||max(r̂t ))
(projected to η-uniform measures);

4: Update skeleton Zt := {z /∈ Z ε(t)∗∗ (M̂t) : Nt(z)< log2(t)};
5: if ∃z ∈ Zt : Nt(z)kl(r̂t(z)||max(r̂t))< (1+δ(t)) log(t) then
6: Explore by playing At ∼ µε(t)η (−; M̂t);
7: else
8: Exploit by playing At uniformly in Z ε(t)∗∗ (M̂t);
9: end if

10: end for

10.5.2 ECoE for recurrent models

Because recurrent models are very similar to bandits, ECoE can be simplified to something
similar to Algorithm III.3. In Section 8.5.2, we have shown that for recurrent models, we have:

K(M) =
∑

z /∈Z ∗∗(M)

∆∗(z)
C(M , z)

where C(M , z) is defined as in (III.12). Similarly to the bandit setting, co-exploration can
be ignored because the algorithm never has to change of nearly optimal component, hence
co-exploration always plays the exploitation policy until regeneration. So, for recurrent models,
ECoE is similar to Algorithm III.3 with kl(r̂(z)||max(r̂t)) changed to C(M , z). The obtained
algorithm is very close to an index policy with an index similar in spirit to IMED-RL Pesquerel
and Maillard (2022). The use of the skeleton {z : Nt(z)> log2(t)} is however very different from
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Burnetas and Katehakis (1997); Pesquerel and Maillard (2022). In these works, the skeleton
is used as a region of the Markov decision process that is considered learned and where the
gain and bias functions can be safely estimated. This fact is crucial in the analysis of Burnetas
and Katehakis (1997); Pesquerel and Maillard (2022) because by computing the index out of
quantities with strong approximation properties, the so-called index is guaranteed to be well-
behaved. ECoE has no such safeguard against ill-behaved indexes, because the skeleton is used
to truncate GLR tests rather than guaranteeing strong approximation properties. The possible
ill-behavior of the index of ECoE and induced misplays are balanced by the η-uniformization of
the exploration policy.

Algorithm III.4 ECoE for recurrent models.
1: for episodes k = 1,2, . . . do
2: Update Z ε(t)∗∗ (M̂t);
3: Update exploitation policy π+t like in Algorithm III.2;

4: Update exploration policy µε(t)η (z; M̂t)≈
1(z /∈Z ε(t)∗∗ (M̂t ))

C(M̂t ,z)
(projected to η-uniform measures);

5: Update skeleton Zt := {z /∈ Z ε(t)∗∗ (M̂t) : Nt(z)< log2(t)};
6: if ∃z ∈ Zt : Nt(z)C(M̂t , z)< (1+δ(t)) log(t) then
7: Explore by playing At ∼ µε(t)η (−; M̂t);
8: else
9: Exploit by playing At ∼ π+t (−|St) until regeneration;

10: end if
11: end for

Remark that we do not provide a closed form for Z ε(t)∗∗ (M̂t) nor a way to compute it.

10.6 Future directions

So the lower bound of Theorem III.5 is optimal, meaning that asymptotically optimal learners
shall have total reward scaling as

EM
s

�

T−1
∑

t=0

Rt

�

= T g∗(s)− K(M) log(T ) + o(log(T )).

Many directions are still to investigate.
First, ECoE only works if the hyper parameter η responsible for the uniformization of

exploration is constant. If it is enough to show that the regret lower bound is optimal, we should
make η a time-dependent vanishing quantity so that ECoE is truly asymptotically optimal. This
would require to study the sensibility of Kεη(M) to η, hence to refine the study of the regularized
lower bound further. I conjecture that taking η(t) = 1/ log log log(t) is enough but this decay is
extremely slow, and a precise analysis would help in that matter.

Second, ECoE cannot run in reasonable time. With the current definition of Z ε∗∗(M), it can
be proved that the computation ofZ ε∗∗(M) is linked to a NP-hard problem. The issue is thankfully
secondary, and there are other ways to relax the notion of optimal pair, e.g., ∆∗(z) > −ε. It
seems that this alternative definition makes the computation of ∆ε∗ polynomial. This being said,
there is still the issue that the GLR tests performed by ECoE are coNP-hard. Indeed, the GLR
tests are directly linked to the computation of critical models hence to the CRITICAL-MODEL
problem (see Theorem III.10). To avoid these tractability issues, these information tests should
be performed by a mechanism of another kind instead. Posterior sampling and bootstrap
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methods are probably a fruitful direction in that matter. After that, we would have to tackle the
computation of nearly-optimal exploration policies.

Yet, the lower bound is intractable in general, so is it only possible to make ECoE run in
reasonable time? Overall, the question of whether there simply exists a tractable method that
is asymptotically optimal is sound. However, the lower bound is asymptotic, so the existence
of such an algorithm is not incompatible with the lower bound’s intractability. Looking at the
pseudo-code of ECoE, we observe that many hyper parameters are slowly vanishing functions.
This is imposed by the various discontinuities of the lower bound. In practice, it means that
T must be greater than a tower of exponentials of the diameter (at least exp(exp(D))) before
the regret upper bound of Theorem III.14 gets close to the lower bound of Theorem III.5. So,
by then, even if the algorithms makes Θ(1) per-step operations, its capability to approach the
regret lower bound K(M) log(T ) would not contradict the intractability of K(M).

Talking about towers of exponentials raises an interesting question. Is this tower of expo-
nentials specific to ECoE or to the lower bound? In other words, is the regret lower bound
of Theorem III.5 “too” asymptotic in nature? This kind of concern leads to the study of re-
gret guarantees for medium time ranges, that are usually done within the model independent
framework. This is the “best of both worlds” of Bubeck and Slivkins (2012) that requires both
minimax optimal and instance dependent optimal regret guarantees, see also Garivier et al.
(2022). Regarding multi-armed bandits, the question of tower of exponentials is more deeply
discussed in Belomestny et al. (2023), with its relation to the second order error in Sanov’s
theorem and its role in the regret analysis of Thompson Sampling. Because of the discontinuities
of the lower bound for Markov decision processes however, it is not clear that the best of both
worlds is even achievable for general communicating models.

Although medium time-ranges regret guarantees are usually done within the model in-
dependent framework, I am not completely convinced that this interpretation of minimax
guarantees is pertinent. The asymptotic nature of Theorem III.5 is rather the product of an
asymptotic assumption, which is strong consistency. One way of circumventing the issue is to
refine the consistency assumption. This is done for example by Garivier et al. (2018), where
the learner is assumed to have regret bounded by a function of the form C(M) log(T) where
C(M) has a structure inspired from UCB’s regret upper bound (see Auer (2002)). They use
finer information theoretic results to show that, for multi-armed bandits, the optimal regret is
of the form K(M) log(T )−Ω(log log(T )). The correct multiplicative coefficient in front of the
second order term log log(T ) is unknown to this day, and regret rates of such kinds have been
achieved by IMED Honda and Takemura (2015) for reward distributions of bounded support. It
is not clear that for communicating Markov decision processes, the second order term is indeed
a negative log log(T), because multi-armed bandits do not require co-exploration. Now, the
direction opened by Garivier et al. (2018) is not the only possibility. Another way, that I believe
is fruitful, is to utterly revoke the asymptotic nature of the consistency assumption and to opt for
a non-asymptotic consistency assumption. When motivated by this idea, I see only one way to
escape a minimax formulation: Bayesian priors and Bayesian formulations of the learning task.

Beyond this, there is the question of generalizing the model dependent lower bound beyond
the communicating setting. The lower bound technique could probably be used to provide a
lower bound for weakly communicating models without modifications. But like I said earlier, a
lower bound without a proof of tightness as much less value. Regarding weakly communicating
models, the issue is precisely that the design of an asymptotically optimal algorithm would
have to tackle the transient nature of a part of the environment. It is not clear that ECoE will
automatically work for weakly communicating Markov decision processes. Beyond weakly
communicating models, the regret lower bound is subjected to depend on the initial state, hence
the technique would have to take this into account.
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10.A Technical results for the proof of Theorem III.5

In this section, we list a few technical results on which Theorem III.5 relies.

Lemma III.15 (Unavoidable sub-optimal pairs). Let M ∈ M . There is c > 0 such that for all
µ ∈ Inv(M/Z∗∗(M)), if µ(z) = 0 for all z ∈ Z∗∗(M), then

∑

z /∈Z∗(M)
µ(z)≥ c∥µ∥1.

Proof of Lemma III.15. Consider the reward vector f (z) := 1(z ∈ Z∗(M)), then the model M ′

obtained by copying M/Z∗∗(M), removing the state-action pairs Z∗∗(M) and setting the reward
function to f . The model M ′ is communicating because it is obtained by removing loops from
M/Z∗∗(M), which is communicating as a contraction of a communicating model. The remaining
pairsZ∗(M) are not forward closed in M ′, hence no policy of M ′ can have a recurrent component
contained in Z∗(M)∩Z (M ′). Accordingly, the optimal gain of M ′ satisfies max(g∗(M ′)) < 1.
Set c := 1−max(g∗(M ′)).

Lemma III.16. Consider Xn ∈ [0, 1] a family of r.v. with E[Xn|Fn] = µ. Let µ̂n := 1
n

∑n
k=1 Xk their

empirical mean. Let N a random variable of support {0,1, . . . , T} where T ≥ 1 is a fixed scalar.
Then, for all ε > 0,

E[N(µ̂N −µ)]≤ ε(E[N] + log(1+ T )) +
È

E
�

N log
�

2∨ 3
p

1+N log(1+T )
2ε3E[N]

��

+ 1.

Proof. Let δ > 0 that shall be tuned later. By Hoeffding’s Lemma, Xn is conditionally σ-
subgaussian for σ = 1

2 . By a time-uniform Azuma-Hoeffding’s inequality (Lemma I.22), for all
m≥ 1,

P

 

∃m≤ n≤ T, |µ̂n −µ| ≥ 2σ

√

√ log(T
p

1+ T )
m

!

≤
1
T

. (III.11)

Setting m= mε := (2σ
ε )

2 log(T
p

1+ T ), we have P(∃mε ≤ n≤ T, |µ̂n −µ| ≥ ε)≤
1
T . The target

expectation is split into two. Denoting f (N) := N(µ̂N −µ), we write:

E[N(µ̂N −µ)] = E[ f (N)1(N ≥ mε)] + E[ f (N)1(N < mε)]. (III.12)

We start by controlling E[ f (N)1(N ≥ mε)]. By construction of mε, we have:

E[ f (N)1(N ≥ mε)]≤ E[ f (N)1(N ≥ mε)1(|µ̂N −µ|< ε)] + E[ f (N)1(N ≥ mε)1(|µ̂N −µ| ≥ ε)]
≤ εE[N] + TP(∃m≤ n≤ T, |µ̂n −µ| ≥ ε)

(by (III.11))≤ εE[N] + 1.

We continue with the other term E[ f (N)1(N < mε)]. Denote Eδ := (∀n ≥ 1, n(µ̂n − µ)2 ≤
4σ2 log(

p
1+ n/δ)). By a time-uniform Azuma-Hoeffding’s inequality again (Lemma I.22), this

good event has probability at least 1−δ. We obtain:

E[ f (N)1(N < mε)] = E[ f (N)1(N < mε)1(Eδ)] + E[ f (N)1(N < mε)1(E c
δ)]

141
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≤ 2σE
�
r

N log
�p

1+N
δ

�

�

+δmε

(∗)
≤ 2σ

r

E
�

N log
�p

1+N
δ

��

+δmε

≡ 2σ
r

E
�

N log
�p

1+N
δ

��

+δ(2σ
ε )

2 log
�

T
p

1+ T
�

where (∗) follows from Jensen’s inequality. Set δ := ε3

6σ2
E[N]

log(1+T ) and plug everything together.

Applied to sequential control, where NT is the number of triggers up to time T , we see that
when E[NT ] + E[log(NT )]≫ log log(T ), then E[NT (µ̂NT

−µ)] = o(E[N]).

10.B A continuous regularization of the regret lower bound

To ease the proof of Theorem III.13, we introduce a few notions and notations. For M ∈M , we
introduce the candidate exploration measures as the η-uniform measures satisfying the epsilonized
exploration and information constraints:

I εη (M) :=

�

µ ∈ Invη(M/Z ε∗∗(M)) : ∀M† ∈ Cnfε(M),
∑

z

µ(z)KLz(M ||M†)≥ 1

�

(III.13)

As the condition “‘KL∗(M ′n||M) +
1
εn
∥M ′n −M∥∗ → 0” will appear repeatedly in the following

analysis, we introduce the shorthand

dεn
(M ′n||M) := KL∗(M ′n||M) +

1
εn
∥M ′n −M∥∗. (III.14)

10.B.1 Proof of Theorem III.13: Uniqueness of the optimal uniformized
exploration measure

For a fixed M† ∈ Cnfε(M), the set of µ ∈ RZ satisfying
∑

z µ(z)KLz(M ||M†) ≥ 1 is a closed
half-space of RZ . It follows that:

�

µ ∈ RZ : ∀M† ∈ Cnfε(M),
∑

z

µ(z)KLz(M ||M†)≥ 1

�

(III.15)

is closed and convex. Meanwhile, Invη(M/Z ∗∗(M)) is also closed and convex, because it is
given as the intersection of linear constraints:

µ ∈ Invη(M/Z ∗∗(M)) ⇐⇒

¨

∀s, a, s′,
∑

a′ µ(s
′, a′) = p(s′|s, a)µ(s, a);

∀s, a, µ(s, a)≥ η
∑

a′ µ(s, a′).
(III.16)

It follows that I εη (M) is closed and convex. So the solution of (III.7) is the minimum of a η-
strongly convex function (for the ℓ2-norm) over a closed convex set. It is therefore well-defined
and unique. ■

10.B.2 Proof of Theorem III.13: Approximation properties of the uni-
formized lower bound

In this section, we prove the statement (2) of Theorem III.13: Given M ∈M we have Kεη(M)→
K(M) when ε,η→ 0. For comparison, we report the regret lower bound and its regularized
version side by side:

inf
µ∈Inv(M/Z ∗∗(M))

∑

z∈Z
µ(z)∆∗(z, M) s.t. ∀M† ∈ Cnf(M),

∑

z∈Z
µ(z)KLz(M ||M†)≥ 1 (III.6)
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inf
µ∈Invη(M/Z ε∗∗(M))

∑

z∈Z
µ(z)∆ε∗(z, M) +η∥µ∥2

2 s.t. ∀M† ∈ Cnfε(M),
∑

z∈Z
µ(z)KLz(M ||M†)≥ 1

(III.7)
By Proposition III.48, we know that for ε small enough, we have Z ε∗∗(M) =Z

∗∗(M). It means
that M/Z ε∗∗(M) = M/Z ∗∗(M) and that Cnfε(M) = Cnf(M) for such ε. Furthermore, by Proposi-
tion III.49, we also have ∆ε∗(M) =∆

∗(M) for ε small enough. All together, we see that if ε > 0
is small enough, then for all η > 0, (III.19) is equivalent to the following problem:

inf
µ∈Invη(M/Z ∗∗(M))

∑

z∈Z
µ(z)∆∗(z, M) +η∥µ∥2

2 s.t. ∀M† ∈ Cnf(M),
∑

z∈Z
µ(z)KLz(M ||M†)≥ 1.

(III.17)
Accordingly, it doesn’t depend on ε anymore and is the same optimization problem as (III.30),
except that the condition µ ∈ Inv(M/Z ∗∗(M)) is changed to the stronger µ ∈ Invη(M/Z ∗∗(M))
and that a quadratic regularization term η∥µ∥2

2 has been added to the objective function. It is
therefore clear that K(M)≤ Kεη(M) thus we only need to prove that limsup Kεη(M)≤ K(M) as
ε,η→ 0. To that extent, we show that invariant measures of M/Z ∗∗(M) can be approximated by
η-uniform invariant measures of M/Z ∗∗(M) provided that η is small enough with Lemma III.17
below.

Lemma III.17 (Uniformization of invariant measures). Let M a communicating model and pick
µ ∈ Inv(M). There exists a family (µη : η > 0) with µη ∈ Invη(M) such that µη → µ for the
ℓ1-norm when η→ 0.

Proof. Let µ ∈ Inv(M) and denote Z1, . . . ,Zk its recurrent components. Without loss of gen-
erality, we assume that µ is a probability measure, i.e., ∥µ∥1 = 1. For Z ′ ⊆ Z , we denote
S (Z ′) := {s : ∃a, (s, a) ∈ Z} the states where elements of Z ′ are rooted. To every component
Zi corresponds a set of exit pairs Z−i that are rooted in S (Zi) but are not supported in µ, i.e.,
Z−i := {(s, a) : s ∈ S (Zi)}\Zi. For λ≡ (λ1, . . . ,λk) ∈ (R∗+)

k, consider the following randomized
policy:

πλη(a|s) :=

¨ 1
|A (s)| if s /∈ S (Z1 ∪ . . .Zk);
λiη+ (1−λiη|A (s)|)

µ(s,a)
∑

a′∈A (s) µ(s,a′)
if s ∈ S (Zi).

Observe that πλη is ηmin(λ)-uniform so that it has a unique invariant probability measure

denoted µλη. We now provide an equivalent of µλη when η→ 0.
Consider the minor [M] := M/(Z1 ∪ . . . ∪Zk) = M/Z1/ · · ·/Zk and denote Si := S [Zi]

for simplicity. In [M], Si becomes a single state denoted [Si]. We consider the modification
[M]′ of [M] where the playable actions from each [Si] are modified as follows. There are two
actions, i+ and i− with kernels given by:

[p]′([Si]|[Si], [i
+]) := 1;

[p]′([s′]|[Si], [i
−]) :=

∑

(s,a)∈Z−i

µ(s)
∥µ|Zi

∥1
[p]([s′]|[s, a]).

Morally, i+ is a looping action, while i− is an exit action that plays an exit pair (s, a) pondered
by the probability of being in s when navigating with µ on Zi. Let [π]′ the policy of [M]′ that
plays i− from every [si] and is uniform from other states. This policy is recurrent and has a
unique invariant probability measure [µ]′. Remark that, for all (s, a) ∈ Zi, we have:

µλη(s, a) ∼
η→0

λi

∥λ∥1
·
[µ]′[Si]
∑

j[µ]′[S j]
·
µ(s, a)
∥µ|Zi

∥1
. (III.18)

Choose λi = ∥µ|Zi
∥1/[µ]′[Si]. This concludes the proof.
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We now finish the proof. Fix δ > 0 and let µ ∈ Inv(M/Z ∗∗(M)) achieving K(M) in (III.6)
within δ range, i.e.,

∑

z µ(z)∆
∗(z, M) ≤ K(M) + δ. By Lemma III.17, provided that η > 0 is

small enough, there exists µη ∈ Inv(M/Z ∗∗(M)) such that ∥µη −µ∥1 ≤ δ. So:

Kεη(M)≤
∑

z∈Z
µη(z, M)∆∗(z) +η∥µη∥2

2

≤
∑

z∈Z
µ(z, M)∆∗(z) +δ∥∆∗(M)∥∞ +η∥µη∥2

1

≤ K(M) +δ+δ∥∆∗(M)∥∞ + 2η
�

∥µ∥2
1 +δ

2
�

.

We conclude that, for all δ > 0

lim sup
ε,η→0

Kεη(M)≤ K(M) +δ(1+ ∥∆∗(M)∥∞)

so limsup Kεη(M)≤ K(M) when ε,η→ 0. ■

10.B.3 Proof of Theorem III.13: Continuity properties of the uniformized
lower bound

Fix (εn) the sequence of optimality relaxation levels and assume that εn ≤ ε0 as given by
Proposition III.12. In this section, we show the following sub-statement of Theorem III.13:

Assume that M = (r, p) satisfies 0< r(z)< 1. For all (M ′n) ∈M
N, we have:

Kεn
η (M

′
n)→ K0

η(M) and µεn
η (M

′
n)→ µ

0
η(M) when KL∗(M ′n||M) +

∥M ′n −M∥∗

εn
→ 0.

(III.19)
In general, the continuity of a maximizer with respect to the parameters is dealt with the

Maximum Theorem Berge (1957). A few subtleties make the result difficult to apply in our
setting however. There is first the double regime requirement on the convergence speeds of
(M ′n) and (εn) that would require an artificial space transformation, and then we would have to
show that the constraints embodied by I εη (M) are lower and upper semi-continuous. This is
however not the case at infinity. In the end, it seems to easier to go with an ad hoc argument
than to try to apply the Maximum Theorem directly.

The result (III.19) is established by showing the twin results below. In spirit, they are closed
to semicontinuity results.

Lemma III.18. Assume that M ∈M is such that, for all z ∈ Z , 0< r(z)< 1. Fix η > 0 and let
(Mn) ∈MN.

(1) (“Lower semicontinuity”) At infinity, µ0
η(M) is near I εn

η (M
′
n) in the following sense:

inf
µ′∈I εn

η (M ′n)





µ′ −µ0
η(M)







1
= o(1) when dεn

(M ′n||M)→ 0 (III.20)

(2) (“Upper semicontinuity”) At infinity, µεn
η (M

′
n) is near I 0

η (M) in the following sense:

inf
µ∈I 0

η (M)





µ−µεn
η (M

′
n)






1
= o(1) when dεn

(M ′n||M)→ 0. (III.21)

Outline of the next sections. In Section 10.B.3.1, we show that Lemma III.18 is enough to
conclude. In Section 10.B.5, we introduce various preliminary material about the properties of
invariant measures, of candidate measures and confusing models, preparing Section 10.B.6 and
Section 10.B.7. The Section 10.B.6 is dedicated to the proof of (III.20), and Section 10.B.7 to
the proof of (III.21). Although (III.20) and (III.21) are very different (yet dual) results, their
proofs mostly identical up to a few minor differences.
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10.B.3.1 Lemma III.18 is enough to conclude

Recall that εn ≤ ε0. Pick (M ′n) ∈M
N. Remark that, by Proposition III.12, we have

∆εn
∗ (M

′
n) =∆

∗(M) + o(1) when KL∗(M ′n||M) +
∥M ′n −M∥∗

εn
→ 0. (III.22)

(STEP 1) The regret lower bound Kεn
η (M

′
n) is asymptotically bounded with K0

η(M) as:

Kεn
η (M

′
n)≤ K0

η(M) + o(1) when KL∗(M ′n||M) +
1
εn
∥M ′n −M∥∗→ 0 (III.23)

Proof. Denote P ′n the ℓ2-projection operation onto the closed convex set I εn
η (M

′
n) (see Sec-

tion 10.B.1). By Lemma III.18, we know that ∥P ′n(µ
0
η(M))−µ

0
η(M)∥1 = o(1) when KL∗(M ′n||M)+

1
εn
∥M ′n −M∥∗→ 0. We have:

Kεn
η (M

′
n)≤

∑

z∈Z

�

P ′n(µ
0
η(M))

�

(z)∆ε∗(z, M ′) +η




P ′n(µ
0
η(M))







2

2

(†)
≤
∑

z∈Z

�

P ′n(µ
0
η(M))

�

(z)∆∗(z, M) +η




P ′n(µ
0
η(M))







2

2
+ o

�




P ′n(µ
0
η(M))







�

(‡)
≤
∑

z∈Z
µ0
η(z, M)∆∗(z, M) +η





µ0
η(M)







2

2
+ o

�

1+




P ′n(µ
0
η(M))





+




µ0
η(M)







�

= K0
η(M) + o(1)

where (†) is an application of Proposition III.12 in the form of (III.22) and (†) follows from
Lemma III.18, and all the o(−) hold when KL∗(M ′n||M) +

1
εn
∥M ′n −M∥∗→ 0.

(STEP 2) The regret lower bound Kεn
η (M

′
n) is asymptotically bounded with K0

η(M) as:

Kεn
η (M

′
n)≥ K0

η(M) + o(1) when KL∗(M ′n||M) +
1
εn
∥M ′n −M∥∗→ 0. (III.24)

Proof. Let P0 the ℓ2-projection operation onto the closed convex set I 0
η (M). By Lemma III.18,

we have ∥P0(µεn
η (M

′
n))−µ

εn
η (M

′
n)∥= o(1) when KL∗(M ′n||M) +

1
εn
∥M ′n −M∥∗→ 0. With similar

computations than in (STEP 1), we show:

K0
η(M)≤ Kεn

η (M
′
n) + o

�

1+ ∥µεn
η (M

′
n)∥
�

(III.25)

when KL∗(M ′n||M)+
1
εn
∥M ′n−M∥∗→ 0. To conclude that the RHS is Kεn

η (M
′
n)+o(1), it is enough

to show ∥µεn
η (M

′
n)∥ is bounded. By definition µεn

η (M
′
n) achieves Kεn

η (M
′
n), so we see that:





µεn
η (M

′
n)






2

2
≤ 1
ηKεn

η (M
′
n)
(∗)
≤ 1

η

�

K0
η(M) + o(1)

�

(III.26)

when KL∗(M ′n||M) +
1
εn
∥M ′n −M∥∗→ 0, where (∗) follows from the previous bound on Kεn

η (M
′
n),

see (III.23). Combining (III.25) and (III.26) together, we get K0
η(M) ≤ Kεn

η (M
′
n) + o(1). We

therefore have shown

Kεn
η (M

′
n) = K0

η(M) + o(1) when KL∗(M ′n||M) +
1
εn
∥M ′n −M∥∗→ 0.

This proves the claim.
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(STEP 3) The optimal exploration measures are asymptotically related as:

µεn
η (M

′
n) = µ

0
η(M) + o(1) when KL∗(M ′n||M) +

1
εn
∥M ′n −M∥∗→ 0. (III.27)

Proof. Assume, ad absurdum, that there exists δ > 0 such that, for all n ≥ 1, there exists
M ′n ∈ M such that KL∗(M ′n||M) + ε

−1
n ∥M

′
n − M∥∗ ≤ 1

n satisfying ∥µεn
η (M

′
n)− µ

0
η(M)∥1 > δ. By

(III.26), the sequence µεn
η (M

′
n) is bounded hence, by compactness, we can assume that it is

converging to some µ′ satisfying ∥µ′ −µ0
η(M)∥> δ without loss of generality. We obtain:

K0
η(M)

(†)
= lim

n→∞
Kεn
η (M

′
n) =

∑

z∈Z
µ′(z) lim

n→∞
∆εn
∗ (z, M ′n) +η∥µ

′∥2
2
(‡)
=
∑

z∈Z
µ′(z)∆∗(z, M) +η∥µ′∥2

2

where (†) follows from (III.24) and (‡) follows from Proposition III.12 in the form of (III.22). By
Lemma III.18 and because I 0

η (M) is closed (Section 10.B.1), we have µ′ ∈ I 0
η (M). But µ0

η(M)
is the unique member of I 0

η (M) achieving K0
η(M), hence µ′ = µ0

η(M); a contradiction.

All together, (III.23), (III.24) and (III.27) prove Theorem III.13 as stated in (III.19). ■

10.B.4 Preliminary results on the set of confusing models

Lemma III.19 (Reduced confusing models). Assume that the underlying model spaceM is in
product form, i.e., thatM =

∏

z∈Z [0, 1]×P (Z ). Let M a communicating model, let ε > 0 and
M† ∈ Cnfε(M). There exists M‡ ∈ Cnfε(M) such that:

(1) For all z ∈ Z and q ∈ {r, p}, KL(q(z)||q‡(z))≤ KL(q(z)||q†(z));
(2) M‡ has small bias span: sp(h∗(M‡))≤ D(M);
(3) M‡(z) = M(z) for all z /∈ Z ∗∗(M‡) \Z ε∗∗(M) and gain-optimal policies of M‡ are unichain.

Proof. Without loss of generality, we can assume that M†(z) = M(z) outside ofZ ∗∗(M†)\Z ε∗∗(M)
and that every optimal policy of M† is unichain. Consider the extended model M ′ where, from
state s ∈ S , the choice of an action consists in choosing whether the transition is done in M
or in M†, hence choosing a ∈A (s), a reward among {r(s, a), r†(s, a)} and a transition among
{p(s, a), p†(s, a)}. The model M ′ is communicating because it contains M with diameter bounded
by D(M ′)≤ D(M). We further have:

g∗(M ′)≥ g∗(M†) and g∗(M ′)≥ g∗(M).

Any (extended) policy achieving optimal bias in M ′ defines a policy π′ on M and a model M‡

such that g∗(M‡) = g∗(M ′) = gπ′(M‡) and sp(h∗(M‡)) = sp(h∗(M ′)) ≤ D(M ′) ≤ D(M) (see
Proposition II.2) making M‡ satisfy (2). Moreover, (1) is automatically satisfied.

We now justify that M‡ ∈ Cnfε(M). Because M† ∈ Cnfε(M), Z ε∗∗(M) remains untouched in
M† and M‡. Accordingly, every ε-gain optimal policy of M has all its recurrent pairs within
Z ε∗∗(M) and has gain at most g∗(M). But since M† ∈ Cnfε(M), we have g∗(M†) > g∗(M),
so g∗(M‡) > g∗(M) and since M‡(z) = M(z) for z ∈ Z ε∗∗(M) by construction, we have M‡ ∈
Cnfε(M).

If (3) isn’t satisfied, then either π′ picks transients rewards or transitions from M† or is
multi-chain. In the first case, remove the transient transitions and in the second case, remove a
recurrent component; Then start the construction over. Repeat until (3) is met.

Lemma III.20. If M is communicating, then infM†∈Cnf(M) KL(M ||M†)> 0.
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Proof. Let M† ∈ Cnf(M). By assumption, we have p†≫ p so M† is communicating as well, so the
uniform policy πu is recurrent under p† and p. By Lemma III.40, if ∥M†||M∥ is smaller than some
ε(M)> 0, then D(p†

πu
)≤ 2D(pπu

), where D(pπ) is the policy-diameter of π (Definition III.8).

Let π,π† bias optimal policies of M and M† respectively. By adapting the rationale of
Proposition II.2, we see that sp(h∗(M)) ≤ D(pπu

) and sp(h∗(M)) ≤ D(p†
πu
). Both M , M† are

communicating, so we have sp(g∗(M)) = 0 and sp(g∗(M†)) = 0, so by Theorem II.1,

∥gπ(M†)− gπ(M)∥∞ ≤ ∥r† − r∥∞ +
1
2

D(pπu
)∥p† − p∥1,

∥gπ
†
(M†)− gπ

†
(M)∥∞ ≤ ∥r† − r∥∞ +

1
2

D(p†
πu
)∥p† − p∥1.

(III.28)

Let∆g(M) :=min{∥gπ(M)− g∗(M)∥∞ : π /∈ Π∗(M)}> 0 the gain-gap of M . Since π† /∈ Π∗(M),

∆g(M)≤ ∥gπ
†
(M)− gπ(M)∥∞ =max

�

gπ(M)− gπ
†
(M)

�

≤max
�

gπ(M)− gπ(M†)
�

+max
�

gπ(M†)− gπ
†
(M†)

�

+max
�

gπ
†
(M†)− gπ

†
(M)

�

≤max
�

gπ(M)− gπ(M†)
�

+max
�

gπ
†
(M†)− gπ

†
(M)

�

≤ 2
�

∥r† − r∥∞ + D(pπu
)∥p† − p∥1

�

.

We obtain that:

∥M† −M∥ ≥
∆g(M)

4(D(pπu
)∨ 1)

∧ ε(M). (III.29)

Conclude using Pinsker’s inequality.

10.B.5 Preliminary results on uniform invariants and candidate measures

We denote Πη(M) the space of η-uniform policies, i.e., randomized policies such that π(a|s)≥ η
for all s ∈ S and a ∈ A (s). For pπ a policy kernel, we denote D(pπ) its diameter (Defini-
tion III.8).

Lemma III.21 (Continuity of uniform invariant measures). In this assertion, we say that a
function f :M → Rd is KL∗-continuous if for all M ∈M and ε > 0, ∃δ > 0,KL∗(M ′||M)< δ⇒
∥ f (M ′)− f (M)∥< ε.

(1) If M is communicating, then Dη(M) := supπ∈Πη(M) D(pπ)<∞;
(2) Dη is continuous at communicating models: if M is communicating, then

∀ε > 0,∃δ > 0,KL∗(M ′||M)< ε⇒ |Dη(M ′)− Dη(M)|+δ;

(3) There exists c(M) > 0 such that, for all µ ∈ Invη(M), min(µ) ≥ ∥µ∥1c(M) and c(−) is
KL∗-continuous at communicating models;

(4) M 7→ Invη(M)∩P (Z ) is KL∗-continuous at M if M is communicating for the Hausdorff
distance.

Proof. We prove all the claims in order. We consider first the model Mη constructed from M as
follows. The state-action space is still Z , but the kernels and rewards are given by:

pη(s, a) := (1−η|A (s)|)p(s, a) +η
∑

a′∈A (s)

p(s, a′);

rη(s, a) := (1−η|A (s)|)r(s, a) +η
∑

a′∈A (s)

r(s, a′).
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The obtained model Mη is communicating, because the execution of the fully uniform policy on
Mη is equivalent to the execution of the uniform policy on M . By construction, the execution of
any η-uniform policy π of M can be seen as the execution of a randomized policy πη of Mη.

(STEP 1) If M is communicating, then Dη(M) := supπ∈Πη(M) D(pπ)<∞.

Proof. Fix s ∈ S and consider M s
η the transform of Mη making s absorbing. Consider the reward

function f(s′, a′) := 1(s = s′) and consider the deterministic policy πf
η with maximal bias for f as

a cost function, in particular, it is solving the Bellman equations associated to the minimization of
the total f -reward. Because M is communicating and πf

η is fully supported, it eventually reaches

s and has gain g f = 0. By construction, πf
η has optimal f-bias hf(s′) := Es′[inf{t ≥ 1 : St = s}]

which is here maximized because πf
η aims at minimizing the f-reward. Accordingly, letting

Ds
η <∞ the bias span of πη, we see that every policy of Πη(M) has reaching time to s upper-

bounded by Ds
η in M .

Set Dη := maxs Ds
η <∞. Observe that Dη corresponds to the diameter of a policy π ∈

Πη(M) and that it upper-bounds the diameter of every other policy of Πη(M). Accordingly,
Dη = supπ∈Πη(M) D(pπ).

(STEP 2) Dη is continuous at communicating models: if M is communicating, then

∀ε > 0,∃δ > 0,KL∗(M ′||M)< ε⇒ |Dη(M ′)− Dη(M)|+δ.

Proof. This is mostly a consequence of Lemma III.39 in the form of (III.125). By construction,
every π ∈ Πη(M) has diameter bounded by Dη(M). If KL∗(M ′||M)<∞, then by (III.125), we
have

�

�D(p′π)− D(pπ)
�

�≤ 1
2 D(pπ)D(p

′
π)∥M

′ −M∥∗ ≤ 1
2 Dη(M)D(p

′
π)∥M

′ −M∥∗.

To obtain an upper-bound of D(p′π), see that D(p′π)(1−
1
2 Dη(M))∥M ′−M∥∗ ≤ D(pπ). So, when

∥M ′ −M∥∗ is small enough, we have:

D(p′π)≤
D(pπ)

1− 1
2 Dη(M)∥M ′ −M∥∗

≤ D(pπ) + Dη(M)
2∥M ′ −M∥∗.

Similarly for the lower bound, when ∥M ′ −M∥∗ is small enough, we have

D(p′π)≤ D(pπ)− Dη(M)
2∥M ′ −M∥∗.

According, every D(pπ) is locally Dη(M)2-Lipschitz continuous at M for ∥−∥∗. So Dη is locally
Dη(M)2-Lipschitz continuous at M as a supremum of Lipschitz continuous functions.

(STEP 3) There is c(M) > 0 such that, for all µ ∈ Invη(M),min(µ) ≥ ∥µ∥1c(M) and c(−) is
KL∗-continuous at communicating models.

Proof. Fix s ∈ S and let f≡ fs := 1(s = s′). Seeing f as a reward function on Mη, we consider a
bias-optimal deterministic policy πf

η for f as a cost function. It has f-gain g f ∈ Re and f-bias hf

satisfying:

∀(s′, a′) ∈ Z , ∆f(s′, a′) := −f(s′, a′) + g f(s′) +
�

es′ − pη(s
′, a′

�

hf ≤ 0.

This deterministic policy πf
η of Mη corresponds to a η-uniform policy πf of M . Because M

is communicating and πf η-uniform, πf is recurrent on M hence g f > 0. Now, every policy
π′ ∈ Πη(M) corresponds to a policy π′η of Mη that satisfies:

f(s′,π′η(s
′))≥ g f(s′) +

�

es′ − pη(s
′,π′η(s

′))
�

hf.
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So g f(π′η)≥ g f.

Now, because every π ∈ Πη(M) is recurrent, the first return time to s is 1
µπ(s)

where µπ is
the unique probability invariant measure of π (Levin and Peres, 2017, Proposition 1.19). It
follows that for all µ ∈ Invη(M) and a ∈A (s), we have µ(s, a)≥ ηg fs(s)∥µ∥1. The lower-bound
c(M) := ηmins g fs(s) > 0 is continuous as the minimum of finitely many gains (here g fs , all
continuous by Lemma III.41) of a continuous communicating transform (here M 7→ Mη) of
M .

(STEP 4) M 7→ Invη(M)∩P (Z ) is KL∗-continuous at M if M is communicating for the Hausdorff
distance.

Proof. Every measure of Invη(M) corresponds to some η-uniform policy π whose diameter is
upper-bounded by Dη(M) by (STEP 2). Provided that KL∗(M ′||M)<∞, we have pπ ∼ p′π and
by Lemma III.42, the unique probability measures µ′π ∈ Inv(π, M ′) and µπ ∈ Inv(π, M) satisfy:

∥µ′π −µπ∥∞ ≤ Dη(M)∥p′π − pπ∥1 ≤ Dη(M)∥M ′ −M∥∗.

It follows that the Hausdorff distance in ℓ∞-norm between Invη(M ′)∩P (Z ) and Invη(M)∩
P (Z ) is bounded by Dη(M)∥M ′−M∥∗, which vanishes with KL∗(M ′||M) by Pinsker’s inequality.

This concludes the proof of Lemma III.21. ■

Lemma III.22 (Candidate measures are bounded away from 0). There exists a constant γ(M)> 0
such that,

inf
¦

∥µ∥∞ : µ ∈ I εn
η (M

′
n)
©

≥ γ(M) when dεn
(M ′n||M)→ 0. (III.30)

Proof. Pick M† ∈ Cnf(M). For n≥ 1, denote M ′†n the model obtained by setting M ′†n (z) = M†(z)
if z /∈ Z ∗∗(M) and M ′†(z) = M ′n(z) if z ∈ Z ∗∗(M). We show that

M ′†n ∈ Cnfεn(M ′n) when dεn
(M ′n||M)→ 0. (III.31)

When dεn
(M ′n||M) is small enough, we know that Z εn

∗∗ (M
′
n) =Z

∗∗(M), see (III.33) and Proposi-
tion III.12. Since M ′n ∼ M , a policy has the same recurrent classes on M ′n and M , so that εn-gain
optimal policies of M ′n are exactly gain optimal policies of M . Pick π ∈ Π∗(M) and π† ∈ Π∗(M†).
Denote C := 1+max{sp(hπ†(M†)), sp(hπ(M))} and remark that by communicativity, we have
gπ†(M†) ∈ Re and gπ(M) ∈ Re. When dεn

(M ′n||M)→ 0, we have

gπ†(M ′†n )− gπ(M
′†
n )
(†)
= gπ†(M ′†n )− gπ(M

′
n)

(‡)
≥ gπ†(M†)− gπ(M

′
n)− C∥M ′†n −M†∥e

(‡)
≥ gπ†(M†)− gπ(M)− 2C∥M ′†n −M†∥e
= gπ†(M†)− gπ(M

†)− 2C∥M ′†n −M†∥e

(III.32)

where (†) holds when dεn
(M ′n||M) → 0, and (‡) both follow from Lemma III.41. Because

M† ∈ Cnf(M), the quantity gπ†(M†) − gπ(M†) is positive and independent from the choice
of (M ′n). Let c := minπ∈Π∗(M)(gπ†(M†)− gπ(M†)) > 0. We deduce that for dεn

(M ′n||M) small
enough, if in addition ∥M ′n−M∥ ≤ c

2C , then every optimal policy of M has lesser gain than π† in
M ′†n . As Z εn

∗∗ (M
′
n) =Z

∗∗(M) when dεn
(M ′n||M) is small enough, and knowing that M ′†n is a copy

of M ′n on Z ∗∗(M) by construction, it follows the recurrent pairs of gain optimal policies of M ′n
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cannot be all contained in Z εn
∗∗ (M

′†
n ). Accordingly, we have M ′†n ∈ Cnfεn(M ′n), showing (III.31).

Moreover, we have:

∀z ∈ Z , KLz(M
′
n||M

′†
n ) = KLz(M ||M†) + o(1)

when KL∗(M ′n||M) is small enough, hence KLz(M ′n||M
′†
n )≤ 2KLz(M ||M†) when dεn

(M ′n||M)→ 0.
Pick µ ∈ I εn

η (M
′
n). Because

∑

z µ(z)KLz(M ′n||M
′†
n ) ≥ 1 when dεn

(M ′n||M)→ 0, there exists (zn)
such that:

1
|Z | ≤ µ(zn)KLzn

(M ′n||M
′†
n )≤ µ(zn) · 2KLzn

(M ||M†) when dεn
(M ′n||M)→ 0

so ∥µ∥∞ ≥ γ(M) := 1
2|Z |KL(M ||M†), and KL(M ||M†) is bounded away from 0 by Lemma III.20.

10.B.6 Proof of Lemma III.18: “lower” semicontinuity

We throughout fix M ∈ M with 0 < r(z) < 1 and assume that Cnf(M) ̸= ∅. Let (M ′n) ∈ M
N

arbitrary such that ∥M ′n −M∥∗ = o(εn). Recall that by Proposition III.12, we have

Z εn
∗∗ (M

′
n)→Z

∗∗(M) and ∆εn
∗ (M

′
n) =∆

∗(M) + o(1) when dεn
(M ′n||M)→ 0. (III.33)

Specifically, it means for all δ > 0, provided that dεn
(M ′n||M) is small enough relatively to δ, we

have Z εn
∗∗ (M

′
n) =Z

∗∗(M) and ∥∆εn
∗ (M

′
n)−∆

∗(M)∞∥ ≤ δ.

Idea of the proof. We want to show that µ0
η(M) is close to I εn

η (M
′
n) provided that dεn

(M ′n||M)
is small enough. The first goal of the proof is to show that µ0

η(M) is close to “rejecting” all
elements of Cnfεn(M

′
n) in the sense that:

inf
M ′n∈Cnfεn (M ′n)

∑

z∈Z
µ0
η(z, M)KLz(M

′
n||M

′†
n )≥ 1− o(1) when dεn

(M ′n||M)→ 0. (III.34)

Then, µ0
η(M) will be “corrected” into an element of I εn

η (M
′
n) by invoking properties of Invη(M ′n).

In (STEP 1), we show that one can restrict the analysis to confusing models M ′†n with rewards
uniformly bounded away form the boundary. Then, we construct from M ′†n a model M†

n that is
almost a confusing model for M , that we repair into a confusing model with M‡δn

n where δn is a
parameter. (STEP 2) introduce technical results that are used in (STEP 3) to tune δn, making
sure that M‡δn

n is very close to M†
n . In (STEP 4), we relate the sums

∑

z∈Z µ
0
η(z, M)KLz(M ′n||M

′†
n )

and
∑

z∈Z µ
0
η(z, M)KLz(Mn||M‡δn

n ) to establish (III.34). We conclude by projecting µ0
η(M) onto

Invεn
η (M

′
n) with Lemma III.21.

(STEP 1) There exists a constant ε > 0 such that, if dεn
(M ′n||M) is small enough, then every

M ′†n ∈ Cnfεn(M ′n) such that ∃z ∈ Z , r ′†n (z)< ε or r ′†n (z)> 1− ε, satisfies:
∑

z∈Z
µ0
η(z, M)KLz(M

′
n||M

′†
n )≥ 1. (III.35)

In other words, we can focus on M ′†n ∈ Cnfεn(M ′n) with rewards within [ε, 1− ε].

Proof. We denote µ ≡ µ0
η(M) for short. By (III.30), we have ∥µ∥ ≥ γ(M) ≡ γ > 0. By

Lemma III.21, because µ is η-uniform we have min(µ) ≥ c∥µ∥∞ where c > 0 is a constant,
hence µ(z)≥ cγ > 0 for all z ∈ Z . So:

∑

z∈Z
µ(z)KLz(M

′
n||M

′†
n )≥ cγmax

z∈Z
KLz(M

′
n||M

′†
n ).
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If maxz KLz(M ′n||M
′†
n )≥

1
cγ then the above is already greater that one and (III.35) is satisfied.

We focus on the case where maxz KLz(M ′n||M
′†
n )<

1
cγ . In particular, we have KL(r ′n(z)||r

′†
n (z))≤

1
cγ for all z ∈ Z . Since r ′n(z) < 1 for all z ∈ Z provided that dεn

(M ′n||M) is small enough, and
knowing that the rewards are Bernoulli, we get:

r ′†n (z)≤ 1− exp

�

−
1
cγ + Ent(r ′n(z))

1− r ′n(z)

�

≤ 1−
1
2

exp

�

−
1
cγ + Ent(r(z))

1− r(z)

�

where the second inequality holds when dεn
(M ′n||M) is small enough. Introduce 1− ε has the

supremum of the RHS for z ∈ Z , satisfying 1− ε < 1 since r(z) < 1 for all z ∈ Z . Similarly,
using r(z)> 0, we show that r ′†n (z) is bounded from below, say r ′†n (z)> ε for all z ∈ Z .

Definitions of M†
n and M‡δ

n . Following (III.35), we assume that M ′†n ∈ Cnfεn(M ′n) has rewards
with [ε, 1−ε]. Without loss of generality, we can consider M ′†n reduced according to Lemma III.19.
In particular, we have sp(h∗(M ′†n ))≤ D(M ′n). Since M ′†n ∈ Cnfεn(M ′n), its rewards and kernels are
the same than M ′n on Z εn

∗∗ (M) (i.e., on Z ∗∗(M) once dεn
(M ′n||M) is small enough) on which the

gain is g∗(M ′n). Yet, M ′†n has greater gain than M ′n, hence there exists another recurrent class of
M ′†n with greater gain which is unique because M ′†n is reduced, see Lemma III.19. Picking a bias
optimal policy π′†n of M ′†n , we see that some of the recurrent pairs of π′†n are not within Z ∗∗(M)
for dεn

(M ′n||M) small enough.
Denote Z ′†n the recurrent pairs of π′†n that are not members of Z ∗∗(M). Consider M†

n given
as follows:

M†
n(z) :=

¨

M(z) if x ∈ Z ∗∗(M)
M ′†n (z) if x /∈ Z ∗∗(M)

(III.36)

Morally, M†
n is almost an alternative model of M , but π′†n may have lost its status of optimal

policy from M ′†n to M†
n . To counterbalance this, we slightly increase the asymptotic reward of

π′†n by considering M‡
n ≡ M‡δ

n obtained by changing r†
n to r†

n +δ1(Z ′†n ), that simply adds δ > 0
to pairs of Z ′†n only.

We now search for conditions on δ > 0 making M‡δ
n ∈ Cnf(M).

(STEP 2) Recall that p(π) denotes the asymptotic kernel of π under p, i.e., is given by p(s, s′;π) :=
lim 1

T Eπs [
∑T

t=1 1(St = s′)]. Let π ∈ Π with recurrent components within Z εn
∗∗ (M) in M. We have:

g(π′†n , M‡δ
n )≥ g(π′†n , M ′†n )− (1+ 2D(M))∥M ′n −M∥e−δp′†n (π

′†
n )eZ ′†n

; (III.37)

g(π, M‡δ
n )≤ g∗(M ′†n |Z ∗∗(M)) + (1+ 2D(M))∥M ′n −M∥∗e (III.38)

when dεn
(M ′n||M) is small enough.

Proof. We start with (III.37). To lighten up notations, we write π ≡ π′†n and u′†π , u‡δ
π , u†

π for
u(π, M ′†n ), u(π, M‡δ

n ) and u(π, M†
n). We have:

g‡δ
π = p‡δ

π r‡δ
π = p†

π

�

r†
π +δeZ ′†n

�

= p†
π

�

r ′†π +
�

r†
π +δeZ ′†n

− r ′†π
��

(∗)
= p†

π

�

g ′†π +
�

I− p′†π
�

h′†π +
�

r†
π +δeZ ′†n

− r ′†π
��

(§)
= g ′†π + p†

π

�

�

I− p†
π

�

h′†π +
�

p†
π − p′†π

�

h′†π +
�

r†
π +δeZ ′†n

− r ′†π
��

($)
= g ′†π + p†

π

��

p†
π − p′†π

�

h′†π +
�

r†
π − r ′†π

��

+δp†
πeZ ′†n
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where (∗) follows from the Poisson equation r ′†π = g ′†π + (I− p′†π )h
′†
π , (§) from sp(g ′†π ) = 0 and ($)

from p†
π(I− p†

π) = 0. By Proposition II.2, we have sp(h′†π ) = sp(h∗(M ′†n ))≤ D(M ′†n ) and because
M ′†n is reduced, we have D(M ′†n ) ≤ D(M ′n) by Lemma III.19. Moreover, D(M ′n) ≤ D∗(M ′n) and
when dεn

(M ′n||Mn) is small enough, we have D(M ′n)≤ 2D(Mn), see Lemma III.39 and (III.125).
We obtain

g(π′†n , M‡δ
n )≥ g(π′†n , M ′†n )− (1+ 2D(M))∥M ′n −M∥e−δp′†n (π

′†
n )eZ ′†n

when dεn
(M ′n||M)→ 0, establishing (III.37).

We proceed with (III.38). Assume that dεn
(M ′n||M) is small enough so thatZ εn

∗∗ (M) =Z
∗∗(M).

If π ∈ Π has recurrent components within Z εn
∗∗ (M), then since M ′†n ≫ M ′n and that M ′n and M

are mutually absolutely continuous, it follows that the recurrent class of π has to be a subset of
Z ∗∗(M). We have:

g(π, M‡δ
n ) = g(π, M)≤ g∗(M)

(∗)
≤ g∗(M ′n|Z ∗∗(M)) + D(M)∥M ′n −M∥e

where (∗) follows from Lemma III.41.

(STEP 3) There exists a constant c(M)> 0 such that, setting

δn :=
2(1+ 2D(M))∥M ′n −M∥

c(M)
∧ (1−max(r)) (III.39)

we have M‡
n ≡ M‡δn

n ∈ Cnf(M) provided that dεn
(M ′n||M) is small enough.

Proof. Assume that dεn
(M ′n||M) is small enough so that (III.37) and (III.38) hold. Let π ∈ Π∗(M).

We have:

g(π′†n , M‡δ
n )≥ g(π, M†δ

n )− 2(1+ 2D(M))∥M ′n −M∥e+δp(π′†n , M†
n)eZ ′†n

.

We claim that p(π†
n, M ′†n )eZ ′†n

≥ c(M)e where c(M) := |S |−1(minz∈Z min{p(s|z) > 0 : s ∈
S })|S |−1.

To see this, consider the recurrent component Z ′′n of π′†n in M ′†n , that remains a recurrent
component in M†

n . Let µ′′n the unique invariant probability measure of Z ′′n on M†
n (which is the

line p(s,−;π′†n ) for (s,π′†n (s)) ∈ Z
′′
n ). Consider (s′′n , a′′n ) ∈ Z

′′
n such that that µ′′n(s

′′
n , a′′n )≥ |S |

−1.
If it belongs to Z ′†n (the recurrent pairs of π′†n that are not members of Z ∗∗(M)), the claim
is established. Otherwise, because Z ′′n is recurrent and that Z ′′n ∩ Z

′†
n ̸= ∅, there is a path

from (s′′n , a′′n ) to (s′′′n , a′′′n ) ∈ Z
′′
n ∩ Z

′†
n of length most |S | − 1 taking only pairs from Z ∗∗(M).

This path has probability |S |c(M) at least because M and M†
n coincide on Z ∗∗(M), hence

µ′′n(s
′′′
n , a′′′n )≥ c(M), proving the claim.

Overall, we obtain:

g(π′†n , M‡δ
n )≥ g(π, M†δ

n ) + 2
�

δc(M)− (1+ 2D(M))∥M ′n −M∥
�

e.

Solving δc(M)− 2(1+ D(M))∥M ′n −M∥ ≥ 0 in δ provides the value of δn. Remark that when
dεn
(M ′n||M) → 0, we have ∥M ′n − M∥ → 0 hence δn → 0. Accordingly, we eventually have

max(r) +δn < 1.

(STEP 4) Establishing (III.34): µ0
η(M) nearly rejects Cnfεn(M ′n) provided that dεn

(M ′n||M) is small
enough:

inf
M ′†n ∈Cnfεn (M ′n)

∑

z∈Z
µ0
η(z, M)KLz(M

′
n||M

′†
n )≥ 1− o(1) when dεn

(M ′n||M)→ 0. (III.34)
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Proof. We denote µ ≡ µ0
η(M) for short. Provided that KL∗(M ′n||M) is small enough, then for

z ∈ Z and q ∈ {r, p}, on the support of q(z) we have (1−ρn)q(z; i) ≤ q′n(z; i) where ρn → 0
when dεn

(M ′n||Mn)→ 0. We have:

(−) :=
∑

z∈Z
µ(z)KLz(M

′
n||M

′†
n )

=
∑

z∈Z
µ(z)

∑

q

∑

i

q′n(z; i) log

�

q′n(z; i)

q′†n (z; i)

�

=
∑

z∈Z
µ(z)

∑

q

�

∑

i

q′n(z; i) log

�

1

q′†n (z; i)

�

− Ent(q′n(z))

�

(∗)
≥
∑

z∈Z
µ(z)

∑

q

�

∑

i

(1−ρn)q(z; i) log

�

1

(1−ρn)q
†
n(z; i)

�

− (1−ρn)Ent(q(z))− ℓρn

�

≥
∑

z∈Z
µ(z)

∑

q

�

(1−ρn)KL(q(z)||q†
n(z))− (ℓ+ 1)ρn

�

= (1−ρn)
∑

z∈Z
µ(z)KLz(M ||M†

n)− 2ρn(ℓ+ 1)∥µ∥1

where ℓ = 1+2 log|S | and (∗) relates Ent(q′n(z)) to Ent(q(z)). Now, KLz(M ||M†
n) = KL(r(z)||r†

n(z))+
KL(p(z)||p†

n(z)) and we know that p†
n = p‡

n. We proceed with:
∑

z∈Z
µ(z)KL(r(z)||r†

n(z)) =
∑

z∈Z
µ(z)kl(r(z), r†

n(z))

=
∑

z∈Z
µ(z)kl

�

r(z), r‡
n(z)−δn1(z ∈ Z ′†n )

�

(∗)
≥
∑

z∈Z
µ(z)

�

kl(r(z), r‡
n(z))−δn1(z ∈ Z ′†n )

r(z)−r‡
n(z)

r‡
n(z)(1−r‡

n(z))

�

≥
∑

z∈Z
µ(z)

�

kl(r(z), r‡
n(z))−δn1(z ∈ Z ′†n )

1
r‡

n(z)(1−r‡
n(z))

�

≥
∑

z∈Z
µ(z)

�

kl(r(z), r‡
n(z))−δn1(z ∈ Z ′†n )

1
ε(1−ε)

�

where (∗) is obtained by convexity of kl(r(z),−). Accordingly, we have:
∑

z∈Z
µ(z)KLz(M ||M†

n)≥
∑

z∈Z
µ(z)KLz(M ||M‡

n)−
δn∥µ∥1
ε(1−ε)

since M‡ ∈ Cnf(M) and µ ∈ I 0
η (M). Following (III.39), we obtain:

∑

z∈Z
µ0
η(z, M)KLz(M

′
n||M

′†
n )≥ 1−ρn −

�

δn
ε(1−ε) + 2ρn(ℓ+ 1)

�

· ∥µ0
η(M)∥1 = 1− o(1)

when dεn
(M ′n||M)→ 0.

We can now conclude. Denote µ≡ µ0
η(M) for short. From (III.34), for all ε > 0, we have:

inf
M ′†n ∈Cnfεn (M ′n

(1+ ε)
∑

z∈Z
µ(z)KLz(M

′
n||M

′†
n )≥ 1 (III.40)

when dεn
(M ′n||M) is small relatively to ε and M . By Lemma III.21, if dεn

(M ′n||M) is small enough,
there exists µ′n ∈ Invεn

η (M
′
n) such that (1 + ε)µ ≤ µ′n ≤ (1 + 2ε)µ′n, so by (III.40), we have

µ′n ∈ I
εn
η (M

′
n) and by construction, ∥µ′n −µ∥ ≤ ε∥µ∥. This establishes (III.20). ■
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10.B.7 Proof of Lemma III.18: “upper” semicontinuity

This is the same proof as Lemma III.18.

10.C Analysis of ECoE

In this part, we analyze the regret of Algorithm III.2, ECoE. For reference, the pseudo-code is
reported on Algorithm III.5.

We prove the theorem below.

Theorem III.23. Fix the parameters of Algorithm III.5 to η,δ > 0. For all M ∈M such
that 0< r(z)< 1, the regret of Algorithm III.5 is asymptotically bounded by:

limsup
T→∞

EM[Reg(T )]
log(T )

≤ K0
η(M). (III.42)

10.C.1 High level architecture of the regret analysis

We are working with the version of the algorithm with additional flag variables, see Algo-
rithm III.5. For instance, time instants are partitioned into four categories.

(1) t ∈ T − is an exploration time where the algorithm isn’t playing π+t and is fetching
information;

(2) t ∈ T ± is a co-exploration time, where the algorithm is playing π+t for informational
purposes;

(3) t ∈ T + is an exploitation time, where the algorithm is playingπ+t to score maximally;
(4) t ∈ T ! is a panic time, where an unknown transition has been seen and data needs

to be updated.

The number of visits of a sub-optimal pair z ∈ Z−(M) are decomposed as follows:

NT (z) =
T−1
∑

t=0

1(Zt = z, t ∈ T −)+
T−1
∑

t=0

1(Zt = z, t ∈ T ±)+
T−1
∑

t=0

1(Zt = z, t ∈ T +)+
T−1
∑

t=0

1(Zt = z, t ∈ T !).

(III.43)
That is, we distinguish four cases. Either Zt = z is played because (1) the algorithm is explorating
to collect information on presumably sub-optimal pairs, or (2) because it is co-explorating to
collect information on the (wrongly) presumed optimal policy, or (3) it is exploiting the (wrongly)
presumed optimal policy, or (4) the algorithm just panicked with a transition that was never
seen so far. Below is a short description of how every term behaves.

(1) Zt = z with t ∈ T − accounts for the dominant part of NT (z) and is the hardest to analyze
and is bounded using a log2(T )-barrier technique. Thanks to uniform exploration properties
(Lemma III.29), every pair of M is visited at least Ω(|T −(t)|) where T −(t) is the number
of exploration times up to t. So, with moderately high probability 1− exp(−

p

log(T )),
M̂t is well concentrated around M once |T −(t)| ≥ γ log(T ) for γ > 0 a small constant, so
the exploitation policy is correct, the exploration measure is correct and the algorithm
will explore optimally. In case of concentration failure, thanks to the skeleton Zt , Reg(T )
and Nz(T ) are shown to be O(log2(T )) with overwhelming probability. This O(log2(T ))
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Algorithm III.5 A near optimal algorithm (annotated version)
Parameters: Exploration uniformization η > 0, ambient spaceM .
Use

Altε(t)(M̂t) :=
�

M̂†≫ M̂t :Z ∗∗(M̂†) ̸⊆ Z ε(t)∗∗ (M̂t)
	

. (III.41)

Use near-optimality threshold ε(t) = 1
log log(t) . Use GLR overshoot δ(t) := 1

log log(t) =ω
�

log log(t)
log(t)

�

.

1: for episodes k = 1,2, . . . do
2: Set tk← t;
3: Update exploitation policy π+tk

: uniform on Z ε(t)∗∗ (M̂t) from S (Z ε(t)∗∗ (M̂t)) and uniform
elsewhere;

4: Update exploration measure µtk
← µε(t)η (M̂t), deduce exploration policy π−tk

(a|s) ∝
µt(s, a);

5: Update skeleton Zt ← {z ∈ Z : Nt(z)≥ log2(t)};
6: Update extended skeleton Yt ←Zt ∪Z ε(t)∗∗ (M̂t);
7: if St is not recurrent under π+t then
8: Play At according to π+t (St ,−);
9: t ← t + 1, add t − 1 in T −;

10: else if ∃M† ∈ Altε(t)(M̂t) s.t. M†|Yt
= M̂t |Yt

and
∑

z Nt(z)KLz(M̂t ||M†)≤ (1+δ(t)) log(t)
then

11: Play At according to π−t (St ,−);
12: t ← t + 1, add t − 1 in T −;
13: else if ∃M† ∈ Altε(t)(M̂t) s.t. M†|Zt

= M̂t |Zt
and

∑

z Nt(z)KLz(M̂t ||M†)≤ (1+δ(t)) log(t)
then

14: Split Z ε(t)∗∗ (M̂t) into communicating components Z 1
t , . . . ,Zm(t)

t ;
15: Let Z i(t)

t the current component containing St ;
16: if log min{Nt(z) : z ∈ Z i(t)

t }< 2 logmin{Nt(z) : z ∈ Z ε(t)∗∗ (M̂t)} then
17: Add t ∈ T ±0 ;
18: repeat
19: Play At according to π+t (−|St);
20: t ← t + 1;
21: if St /∈ S (Z

i(t)
t ) then add t − 1 in T ! and break; ▷ transition discovery

22: else add t − 1 in T ±;
23: until St = Stk

; ▷ regeneration
24: else
25: Play At according to π−t (St ,−);
26: t ← t + 1, add t − 1 in T −;
27: end if
28: else
29: Add t in T +0 ;
30: repeat
31: Play At according to π+t (−|St);
32: t ← t + 1;
33: if St /∈ S (Z

i(t)
t ) then add t − 1 in T ! and break; ▷ transition discovery

34: else add t − 1 in T +;
35: until St = Stk

; ▷ regeneration
36: end if
37: end for

EXPLORATION (t ∈ T −)

COEXPLORATION (t ∈ T ±)

EXPLOITATION (t ∈ T +)
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is killed by the error probability exp(−
p

log(T )) when T is large enough, so that what
happens in case of concentration failure can be neglected.

(2) Zt = z with t ∈ T ± means that the algorithm is tackling with a possible lack of information
on the empirically optimal policy that is actually sub-optimal. The expected number of
such time instants is directly linked to the correctness of the co-exploration test, and it
is shown that there are O(log log(T)3) sub-optimal co-exploration times in expectation
(Lemma III.24).

(3) Zt = z with t ∈ T + means that the algorithm isn’t explorating, yet the empirically optimal
policy is wrong. The expected number of such time instant is directly linked to the
correctness of the exploration test, and it shown that the terms 1(Zt = z, t ∈ T +) account
for O(1) in expectation (Lemma III.25).

(4) Every time the algorithm the algorithm panics, a new transition has been observed.
Because the total number of transitions is |Z | × |S |, the cardinal of |T !| is bounded and
these terms can be neglected.

Lemma III.24 (Wrong co-exploration). For all z /∈ Z ∗∗(M), we have:

E

�

T−1
∑

t=0

1(Zt = z, t ∈ T ±)

�

= O
�

log log(T )3
�

. (III.44)

Lemma III.25 (Wrong exploitation). For all z /∈ Z ∗∗(M), we have:

E

�∞
∑

t=0

1(Zt = z, t ∈ T +)

�

<∞. (III.45)

Lemma III.26 (Exploration). For all z /∈ Z ∗∗(M), we have:

E

�

T−1
∑

t=0

1(Zt = z, t ∈ T −)

�

≤ µ0
η(z, M) log(T ) + o(log(T )). (III.46)

10.C.2 Proof of Lemma III.25: Amount of wrong exploitation

Fix z /∈ Z ∗∗(M). Because exploitation is always done until regeneration, there are two kinds of
exploitation time instants. The first kind are initial exploitation times t ∈ T +0 and the second
kind are exploitation times t ∈ T + \ T +0 awaiting for regeneration. The amount of the first
bound the second and are time-instants when the co-exploration GLR test has been passed.

(STEP 1) For z /∈ Z ∗∗(M), we have:

E

�

T−1
∑

t=0

1(Zt = z, t ∈ T +)

�

= O

�

E

�

T−1
∑

t=0

1(Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M), t ∈ T +0 )

��

(III.47)

Proof. Let (τ0
i ) the stopping time enumeration of initial exploitation times such thatZ ε(t)∗∗ (M̂t) ̸=

Z ∗∗(M). They corresponds to phases tk, . . . , tk+1 − 1. Construct inductively the sequence of
stopping times (τi) and the index progression j(−) such that τ0

i = τ j(i) and τ0
i + ℓ= τ j(i)+ℓ if

τ0
i + ℓ and τ0

i are within the same phase. Fix z0 /∈ Z ∗∗(M). Observe that z0 cannot be exploited
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at time τ j(i)+ℓ unless at time t = τ j(i), we have Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M). It follows that:

T−1
∑

t=0

1(Zt = z0, t ∈ T +) =
∞
∑

i=1

τ j(i+1)−1∧(T−1)
∑

t=τ j(i)

1(Zt = z0)≤
∞
∑

i=1

1(τ j(i) < T )
�

τ j(i+1)−1 −τ j(i) + 1
�

.

(III.48)
Because every exploitation phase is done until exploration (or panic), the aggregate duration
of exploitation phases is bounded by the number of such phases. To see this, consider an
exploitation phase t ≡ tk. Let Z0 the component of Z ε(t)∗∗ (M̂t) that the algorithm is intending to
exploit. Consider the reward function f (s, a) = 1(s = Stk

) + 1(s /∈ S (Z0)) which is marking the
initial state of the current phase and the outside of the states spawned by Z0. By design, over
the exploitation phase we have:

2=
tk+1
∑

t=tk

f (Zt) =
tk+1−1
∑

t=tk

f (Zt) + 1..

Consider g f , h f the gain and bias functions associated to the reward function f obtained by
iterating the exploitation policy of the current phase π+tk

. Remark that sp(g f (s)) = 0 and that

min(g f ) > 0 Let 0 < c, C <∞ the minimum (respectively maximum) value that min(g f )
(respectively sp(h f )) can take for all (finitely many) values of π+tk

,Z0, Stk
. We have:

1=
tk+1−1
∑

t=tk

f (Zt)
(†)
=

tk+1−1
∑

t=tk

�

g f (St) +
�

eSt
− p(St , At)

�

h f
�

≥ (tk+1 − tk)c − C +
tk+1−1
∑

t=tk

�

eSt+1
− p(St , At)

�

h f

where (†) uses the Poisson equation g f (s) + h f (s) = f (s, a) + p(s, a)h f . Taking the expectation,
we find that E[tk+1 − tk]≤

1
c · (1+ C) =: C0. Together with (III.48), we find:

E

�

T−1
∑

t=0

1(Zt = z0, t ∈ T +)

�

≤ E

�∞
∑

i=1

1(τ j(i) < T )
�

τ j(i+1)−1 −τ j(i) + 1
�

�

= E

�∞
∑

i=1

1(τ j(i) < T )E
�

τ j(i+1)−1 −τ j(i) + 1
�

� S0, A0, R0, . . . , Sτ j(i)

�

�

≤ C0E

�∞
∑

i=1

1(τ j(i) < T )

�

= C0E

�

T−1
∑

t=0

1(Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M), t ∈ T +0 )

�

.

This proves the claim.

(STEP 2) The number of initial exploitation times such that Z ∗∗(M) is miss-estimated are is
bounded in expectation:

E

�∞
∑

t=0

1(Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M), t ∈ T +0 )

�

<∞. (III.49)

Proof. By definition of initial exploitation times, if t ∈ T +0 then the algorithm has passed the
co-exploration GLR test, meaning that for all M̂† ∈ Altε(t)(M̂t) that coincides with M̂t on the
current skeleton Zt , we have

ψNt
(M̂t ||M̂†) :=

∑

z∈Z
Nt(z)KLz(M̂t ||M̂†)≥ (1+δ(t)) log(t). (III.50)
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Further assume that Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M). Consider the model M ′t given by M ′t(z) := M̂t(x) for
z ∈ Zt and M ′t(z) := M(x) otherwise. Since M̂t ≪ M , we have M̂t ≪ M ′t as well. Introduce the
good event:

Et :=
�

∀z ∈ Z , Nt(z)≥ log2(t)⇒ dε(t)(M̂t(z)||M(z))<
ε0
|Z |

�

(III.51)

where ε0 > 0 is chosen small enough such that, when we have dε(t)(M ′t ||M)< ε0, it follows that
Z ε(t)∗∗ (M

′
t) =Z

∗∗(M) ̸=Z ε(t)∗∗ (M̂t) (see Proposition III.12). But recall that M ′t and M̂t are copies
of one another on Z ε(t)∗∗ (M̂t), hence of the gain of any unichain policy converging to Z ε(t)∗∗ (M̂t) is
the same in M̂t and M ′t . Moreover, choosing this policy uniform outside of its unique recurrent
component guarantees that its recurrent component is unique and is the same in M̂t and M ′t .
And yet Z ε(t)∗∗ (M̂t) \ Z ε(t)∗∗ (M

′
t) ̸= ∅ so necessarily, Z ∗∗(M ′t) \ Z

ε(t)
∗∗ (M̂t) ̸= ∅. In other words,

M ′t ∈ Altε(t)(M̂t). Moreover, the models M̂t and M ′t coincide on the skeleton by construction. By
(III.50), we see that, on Et ,

(1+δ(t)) log(t)≤ψNt
(M̂t ||M ′t) =

∑

z /∈Zt

Nt(z)KLx(M̂t ||M)≡ψN ′t (M̂t ||M) (III.52)

where N ′t is copy of Nt which is reset to zero on pairs of the skeleton. We conclude the proof with
a combinatorial argument invoking Sanov’s theorem. For n ∈ NZ , denote M̂ n the observed model
under the deterministic Nt = n, hence M̂ Nt = M̂t by definition. LetM n the (discrete) space of
MDPs where rewards and kernels at z are all the possible empirical distributions obtained with
n(z) samples. Denote [log2(t)] := {0, . . . , ⌊log2(t)⌋}. We have:

(∗) := E
�

1(Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M), t ∈ T +0 )
�

≤ E
�

1(Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M), t ∈ T +0 ,Et)
�

+ E
�

1(E c
t )
�

(†)
≤ E



1

 

ψN ′t (M̂t ||M) :=
∑

z /∈Zt

Nt(z)KL(M̂t ||M)≥ (1+δ(t)) log(t)

!



+ P
�

E c
t

�

(‡)
=

∑

n∈[log2(t)]Z

E
�

1
�

ψN ′t (M̂t ||M)≥ (1+δ(t)) log(t), (∀z /∈ Zt , Nt(z) = n(z)), (∀z ∈ Zt , n(z) = 0)
��

+ P
�

E c
t

�

=
∑

n∈[log2(t)]Z

∑

M ′∈M n

E
�

1
�

ψn(M
′||M)≥ (1+δ(t)) log(t)

�

1
�

M̂ n = M ′
��

+ P
�

E c
t

�

=
∑

n∈[log2(t)]Z

∑

M ′∈M n

1
�

ψn(M
′||M)≥ (1+δ(t)) log(t)

�

P(M̂ n = M ′) + P
�

E c
t

�

(§)
≤

∑

n∈[log2(t)]Z

∑

M ′∈M n

1

�

∑

z∈Z
n(z)KLz(M

′||M)≥ (1+δ(t)) log(t)

�

exp

�

−
∑

z∈Z
n(z)KLz(M

′||M)

�

+ P
�

E c
t

�

≤
∑

n∈[log2(t)]Z

∑

M ′∈M n

exp(−(1+δ(t)) log(t)) + P
�

E c
t

�

($)
=
�

1+ ⌊log2(t)⌋
�|Z |�

1+ ⌊log2(t)⌋
�|Z ||S |�

1+ ⌊log2(t)⌋
�2|Z |

�

1
t

�1+δ(t)

+ P
�

E c
t

�

(#)
= o

�

1

t log2(t)

�

+ P
�

E c
t

�

.

In the above, (†) is obtained with (III.52), (‡) follows by construction of N ′t , (§) is a consequence
of an all-time Sanov theorem (Lemma III.33), ($) follows from classical combinatorial bounds
(Lemma III.34) and (#) is obtained by expanding the definition of δ(t) and using log log(t) =
o(log(t)1/2). By Lemma III.32, we know that

∑∞
t=1 P(E c

t )<∞. We conclude accordingly that
∑∞

t=0 E[1(Z ε(t)∗∗ (M̂t) ̸=Z ∗∗(M), t ∈ T +0 )]<∞.
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We conclude by combining (III.47) and (III.49). ■

10.C.3 Proof of Lemma III.24: Amount of wrong co-exploration

Fix z /∈ Z ∗∗(M).

Decomposition with good events. If the algorithm co-explores, then it has passed the ex-
ploration GLR test, meaning that for all M̂† ∈ Altε(t)(M̂t) that coincides with M̂t on the current
skeleton Zt and nearly optimal pairs Z ε(t)∗∗ (M̂t), we have:

ψNt
(M̂t ||M̂†) :=

∑

z∈Z
Nt(z)KLz(M̂t ||M̂†)≥ (1+δ) log(t). (III.53)

Consider the model M ′t given by M ′t(z) := M̂t(z) for z ∈ Zt ∪ Z ε(t)∗∗ (M̂t) and M ′t(z) = M(z)
otherwise. Introduce the events:

Et := (∀z ∈ Z , Nt(z)≥ log2(t)⇒ dε(t)(M̂t(z)||M(z)<
ε0
|Z |)

E ′t := (∀z ∈ Z ε(t)∗∗ (M̂t), dε(t)(M̂t(z)||M(z))<
ε0
|Z |)

(III.54)

The first event Et states that the data is approximately correct on the skeleton and the second E ′t
that it is approximately correct on nearly optimal pairs. We decompose 1(Zt = z, t ∈ T ±) as
follows:

E[1(Zt = z, t ∈ T ±)]≤ E[1(Zt = z, t ∈ T ±,Et ,E ′t )] + E[1(Zt = z, t ∈ T ±,E ′ct )] + E[1(E c
t )]

The first term E[1(Zt = z, t ∈ T ±,Et ,E ′t )] is handled similarly to the wrong exploitation term
(Section 10.C.2) and is shown to be o(t−1 log−2(t)). The third term E[1(E c

t )] is shown to be
o(t−2) with Lemma III.32. The dominant term is the second one, E[1(Zt = z, t ∈ T ±,E ′ct )] and
account for the speed at which co-exploration gather information on Z ε(t)∗∗ (M̂t). It is shown to
be O(log log(T )3), see Lemmas III.27 and III.28.

Introducing the co-exploration structure Z±t . When a co-exploration phase begins, it last until
regeneration or until regeneration is compromised because of the discovery of a new transition
that provokes a panic time. We therefore take into account the current co-exploration structure.
Co-exploration times T ± are further refined by taking account of the current nearly optimal pairs
Z ε(t)∗∗ (M̂t). By design, the algorithm splits Z ε(t)∗∗ (M̂t) into components Z 1

t , . . . ,Zm(t)
t that are

the communicating components of Z ε(t)∗∗ (M̂t) under the empirically observed model M̂t .
2 The

decomposition itself is denoted Z±t := (Z 1
t , . . . ,Zm(t)

t ) and is called the co-exploration structure
at time t. Given a co-exploration structure Z0, we introduce T ±(Z0) the co-exploration times
where the co-exploration structure is Z0 at the associated initial co-exploration time:

T ±(Z0) :=
¦

t ∈ T ± : Z±t0
= Z0 with t0 := sup

�

t ′ : t ′ ∈ T ±0
	

©

(III.55)

Depending on whether the co-exploration structure Z0 is closed in M (i.e., every Z0 ∈ Z0 is
communicating in M), the analysis is different. If Z0 is not closed, it means that the support
of the empirical kernel is off on one of the components Z i

t0
∈ Z±t0

of Z ε(t0)
∗∗ (M̂t0

) and the
algorithm will quickly figure it out, hence the associated number of co-exploration times is

2A collection of pairs Z ′ ⊆ Z is said communicating if M |Z ′ , obtained by restricting states to S (Z ′) and playable
actions from s to {s} ×A (s)∩Z ′, is well-defined and communicating. A communicating component under M̂ of Z ′
is a maximal set Z ′′ ⊆ Z ′ such that Z ′′ is communicating for M̂ .
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small (Section 10.C.3.2, see Lemma III.28). If it is closed, we show that co-exploration ensures
uniform visit guarantees on Z ε(t0)

∗∗ (M̂t0
) and E ′ct cannot hold for too long (Section 10.C.3.1, see

Lemma III.27). We show that:

(∗) :=
T−1
∑

t=0

E[1(Zt = z, t ∈ T ±)]

≤
∞
∑

t=0

E[1(Zt = z, t ∈ T ±,Et ,E ′t )] +
T−1
∑

t=0

E[1(Zt = z, t ∈ T ±,E ′ct )] +
∞
∑

t=0

E[1(E c
t )]

(†)
= O(1) +

T−1
∑

t=0

E[1(Zt = z, t ∈ T ±,E ′ct )] +O(1)

≤
∑

Z0 closed

T−1
∑

t=0

E[1(Zt = z, t ∈ T ±(Z0),E ′ct )] +
∑

Z0 not closed

∞
∑

t=0

E[1(Zt = z, t ∈ T ±(Z0))] +O(1)

(‡)
= O

�

log log(T )3
�

+O(1) +O(1) = O
�

log log(T )3
�

which is the desired result. In the above, (†) follows with the same technique than in the
analysis of the amount of wrong exploitation (Section 10.C.2) and (‡) follows by Lemma III.28
and Lemma III.27. The remaining of the section is dedicated to a proof of Lemma III.28 and
Lemma III.27.

10.C.3.1 Co-exploration with correct kernel supports

We start with the dominant term (Lemma III.27). The proof of Lemma III.28 will share many
similarities.

Lemma III.27 (Co-exploration with correct supports). Let Z0 a closed co-exploration
structure. We have:

E

�

T−1
∑

t=0

1(t ∈ T ±(Z0),E ′ct )

�

= O
�

log log(T )3
�

. (III.56)

Proof of Lemma III.27. Fix Z0 = (Z 1
0 , . . . ,Zm

0 ) a closed co-exploration structure and denote (τ j)
the stopping-time enumeration of T ±(Z0). Let T ±0 (Z0) := {t ∈ T ±0 : Z±t = Z0} the initial
co-exploration associated to Z0 and let τ j(i) its i-th element. By definition, every Z u

0 is a commu-
nicating component of Z±t under M̂t when Z±t = Z0; By assumption, Z u

0 is also communicating in
M . Given a component u, we write I u := {i : Sτ j(i)

∈ S (Z u
0 )} the index of initial co-exploration

times starting in the component u.

(STEP 1) Fix a component u ∈ {1, . . . , m} and let z0 ∈ Z u
0 . There exists α > 0 such that, for all

ℓ≥ 1,
P
�

Nτ j(i+1)
(z0)< αℓ and ℓ≤ |I u ∩ {1, . . . , i}|

�

= o
�

ℓ−2
�

. (III.57)

Proof. Fix z0 ∈ Z u
0 and introduce the reward function f (z) := 1(z = z0) and let g f , h f the

associated gain and bias function obtained by iterating the uniform policy on Z u
0 . We see that

sp(g f ) = 0 becauseZ u
0 is a communicating component. Denote β := sp(h f ) and α :=min(g f )>

0. Recall that [i] := {1, . . . , i}. We have:

Nτ j(i+1)
(z0)≥

∑

i′∈I u∩[i]

j(i′+1)−1
∑

j′= j(i′)

f (Sτ j′
, Aτ j′

)
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(†)
=

∑

i′∈I u∩[i]

j(i′+1)−1
∑

j′= j(i′)

�

g f (Sτ j′
) +

�

eSτ j′
− p(Sτ j′

, Aτ j′
)
�

h f
�

(‡)
= α

 

∑

i′∈I u∩[i]

(τ j(i′+1)−1 −τ j(i′) + 1)

!

+
∑

i′∈I u∩[i]

j(i′+1)−1
∑

j′= j(i′)

�

eSτ j′+1
− p(Sτ j′

, Aτ j′
)
�

h f

(§)
≥ αT u

i − β

√

√

√

T u
i log

�Æ

1+ T u
i

δ

�

where (†) invokes the Poisson equation g f (s, a) + h f = f (s, a) + p(s, a)h f ; (‡) uses the regen-
eration guarantees of co-exploration and (§) bounds the RHS martingale with a time-uniform
Azuma-Hoeffding inequality (Lemma I.22) with probability 1−δ, and T u

i is a short-hand for
∑

i′∈I u∩[i](τ j(i′+1)−1 −τ j(i′) + 1). In particular, we have T u
i ≥ |I

u ∩ [i]|. Remark that:

β

√

√

√

T u
i log

�Æ

1+ T u
i

δ

�

<
1
2
αT u

i ⇐⇒ δ > exp

�

−
α
Æ

T u
i

2β
+

1
2

log(1+ T u
i )

�

= o
�

|I u ∩ [i]|−2�.

We conclude accordingly.

(STEP 2) There exists a constant α > 0 such that:

∀i ≥ 1,∀z ∈
⋃

Z0, P
�

Nτ j(i)
(z)< α

p
i
�

= o
�

i−2
�

. (III.58)

Proof. By the pigeon-hole principle, there exists a component u such that |I u ∩ [i]| ≥ ⌈ i
m⌉. So,

for i′ < i the component u was chosen to start a co-exploration phase, i.e., there exists i′ < i
such that:

logmin
¦

Nτ j(i′)
(z) : z ∈ Z u

0

©

≤ 2 logmin
¦

Nτ j(i′)
(z) : z ∈

⋃

Z0

©

(III.59)

and such that |I u ∩ [i′]| ≥ ⌈ i
m⌉ − 1. By (III.57), we have:

P
�

log min
¦

Nτ j(i′)
(z) : z ∈ Z u

0

©

≥ log
�

α ·
i −m

m

��

= 1− o
�

i−2
�

. (III.60)

Because visit counts are monotone with respect to time, combining (III.59) and (III.60) we
obtain that with probability 1− o(i−2),

min
¦

Nτ j(i′)
(z) : z ∈ Z0

©

≥ exp
�

1
2

log
�

α ·
i −m

m

��

= Ω
�p

i
�

.

This proves the claim.

Remark than in (III.58), the number of visits of z at the co-exploration time τ j(i) is controlled
relatively to the number of initial co-exploration times prior to τ j(i), which is i. We know relate
j(i) and i.

(STEP 3) There exists α,β > 0 such that P(αi < j(i) < β i) = 1− o(i−2). In other words, the
number of initial co-exploration times grows at the same speed than the number of co-exploration
times.

Proof. Consider a initial co-exploration τ j(i) and denote Z u
0 the current co-explored component.

Consider the reward function f (s, a) := 1(s = Sτ j(i)
) and let g f , h f the associated gain and bias

functions obtained by iterating the uniform policy on the current component Z u
0 . We see that
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sp(g f ) = 0 because Z u
0 is closed. Denote α1 := sp(h f ) and α2 :=min(g f ) > 0. Thanks to the

regenerative design of co-exploration phases, we have:

1=
τ j(i+1)−1
∑

t=τ j(i)

f (St , At)

(†)
=
τ j(i+1)−1
∑

t=τ j(i)

�

g f (St) +
�

eSt
− p(St , At)

�

h f
�

= α1(τ j(i+1)−1 −τ j(i) + 1) +
τ j(i+1)−1
∑

t=τ j(i)

�

eSt+1
− p(St , At)

�

h f .

In the above, (†) follows by the Poisson equation g f (s, a) + h f = f (s, a) + p(s, a)h f . Summing
for i, we find:

i = α1 j(i + 1) +
i
∑

i′=1

τ j(i′+1)−1
∑

t=τ j(i′)

�

eSt+1
− p(St , At)

�

h f

(†)
≥ α1 j(i + 1)−α2

√

√

√

j(i + 1) log

�p

1+ j(i + 1)
δ

�

where (†) bounds the RHS martingale with a time-uniform Azuma-Hoeffding inequality (Lemma I.22)
and holds with probability 1− δ. We get a similar lower-bound. We conclude similarly than
in (STEP 1) by finding a condition on δ > 0 such that the error term is lower than 1

2α1 j(i)
and consider the worst α1,α2 possible (depending on the current component u and initial state
Sτi

).

(STEP 4) Recall that (τ j) is the stopping-time enumeration of T ±(Z0). We have

E

�

T−1
∑

t=0

1(t ∈ T ±(Z0),E ′ct )

�

≤ E





∞
∑

j=1

∑

z∈Z
1
�

KL∗(M̂τ j
(z)||M(z))< ε0

4|Z | log log(T ) and Nτ j
(z)< α

p

j
�



+O(1).

(III.61)

Proof. By combining the results of (STEP 2) and (STEP 3), we find that there exists α > 0 such
that:

∀i ≥ 1,∀z ∈
⋃

Z0, P
�

Ni(z)< α
p

i
�

= o
�

i−2
�

. (III.62)

We write:

(∗) := E

�

T−1
∑

t=0

1(t ∈ T ±(Z0),E ′ct )

�

= E





∞
∑

j=1

1(τ j < T,E ′cτ j
)





≤ E





∞
∑

j=1

1(τ j < T,E ′cτ j
, (∀z ∈ Z0, Nτ j

(z)≥ α
p

j))



+ E





∞
∑

j=1

1(∃z ∈ Z0, Nτ j
(z)< α

p

j)





(†)
= E





∞
∑

j=1

1

�

τ j < T,

�

∃z ∈
⋃

Z0, dε(τ j)(M̂τ j
(z)||M(z))≥ ε0

|Z |

�

(∀z ∈
⋃

Z0, Nτ j
(z)≥ α

p

j)

�



+
∞
∑

j=1

o
�

j−2
�
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where (†) follows by (III.62). We focus on the second term. We simplify a little bit the event
involving dε(t)(−). By expanding its definition and invoking Pinsker’s inequality, we have:

dε(M
′(z)||M(z))≤ KL∗(M ′(z)||M(z)) + 1

ε

Æ

2KL∗(M ′(z)||M(z)).

Provided that ε0 < 1, we can continue the previous computation with:

(∗)≤ E





∞
∑

j=1

1

�

τ j < T,

�

∃z ∈
⋃

Z0, 4
ε(τ j)

KL∗(M̂(τ j)(z)||M(z))<
ε0
|Z |

�

(∀z ∈
⋃

Z0, Nτ j
(z)≥ α

p

j)

�



+O(1)

≤ E





∞
∑

j=1

1

�
�

∃z ∈
⋃

Z0, KL∗(M̂τ j
(z)||M(z))< ε0

4|Z | log log(T )

�

,

(∀z ∈
⋃

Z0, Nτ j
(z)≥ α

p

j)

�



+O(1).

This proves the claim.

We finally prove the result. Starting by invoking (III.61), we have:

(∗) := E

�

T−1
∑

t=0

1(t ∈ T ±(Z0),E ′ct )

�

≤ E





∞
∑

j=1

∑

z∈Z
1
�

KL∗(M̂τ j
(z)||M(z))< ε0

4|Z | log log(T ) and Nτ j
(z)< α

p

j
�



+O(1)

(†)
=
∑

z∈Z

∞
∑

j=1

P
�

KL(M̂τ j
(z)||M(z))< ε0

4|Z | log log(T ) and Nτ j
(z)< α

p

j
�

+O(1)

(‡)
≤ 2

∑

z∈Z

∞
∑

j=1

�

exp

�

−
ε0

p

j

4|S ||Z | log log(T )
+ log

�

1+
p

j
�

+ 1

�

∧ 1

�

+O(1)

where (†) converts KL∗ to KL using Lemma III.37 (which is applicable provided that ε0/(4|Z | log log(T ))
is small enough) and (‡) by Lemma III.36. Setting C := ε0

4|S ||Z | , we have to upper-bound a term
of the form:

ψ(T ) :=
∞
∑

n=1

�

�

1+
p

n
�

exp
�

−
C
p

n
log log(T )

��

∧ 1 (III.63)

Set α := C
log log(T ) . We have:

ψ(T )≤ 2
∞
∑

n=1

�p
n exp

�

−α
p

n
��

∧ 1= 2

 

¡

1
α2

¤

+
∞
∑

n>⌈α−2⌉

p
n exp

�

−α
p

n
�

!

(†)
≤ 2

�

¡

1
α2

¤

+

∫ ∞

0

p
x exp

�

−α
p

x
�

d x

�

= 2

�

¡

1
α2

¤

+
2
α3

∫ ∞

0

x2 exp(−x)d x

�

= 2
�¡

1
α2

¤

+
4
α3

�

= O
�

log log(T )3
�

where (†) is a sum-integral comparison, using the fact that f (n) :=
p

n exp(−α
p

n) is shown to
be decreasing on (α−2,∞). Accordingly, we end up with

E

�

T−1
∑

t=0

1(t ∈ T ±(Z0),E ′ut )

�

= O
�

log log(T )3
�

. (III.64)

This is the desired result. ■



164 Chapter 10. ECoE: A nearly asymptotically optimal algorithmic scheme

10.C.3.2 Co-exploration with wrong kernel supports

The proof shares many similarities with the one of Lemma III.27, see Section 10.C.3.1.

Lemma III.28 (Co-exploration with wrong supports). Let Z0 a non-closed co-exploration
structure. Then:

E

�∞
∑

t=0

1(t ∈ T ±(Z0))

�

<∞. (III.65)

Proof of Lemma III.28. Fix Z0 = (Z 1
0 , . . . ,Zm

0 ) a non closed set of pairs and denote (τ j) the
stopping-time enumeration of T ±(Z0). Let T ±0 (Z0) := {t ∈ T ±0 : Z±t = Z0} the initial co-
exploration associated to Z0 and let τ j(i) its i-th element. Given a component u, we write
I u := {i : Sτ j(i)

∈ S (Z u
0 )} the index of initial co-exploration times starting in the component u.

Because Z0 is not closed for M , some components Z u
0 are not forwardly closed in M .3 Intuitively

speaking, these components cannot be visited too much while keeping the co-exploration
structure Z0, because breaking transitions are found quickly. We start with a few facts that echo
the proof of Lemma III.27.

(STEP 1) Fix a component u ∈ {1, . . . , m} and let z0 ∈ Z u
0 . There exists α > 0 such that, for all

ℓ≥ 1,
P
�

Nτ j(i+1)
(z0)< αℓ and ℓ≤ |I u ∩ {1, . . . , i}|

�

= o
�

ℓ−2
�

. (III.66)

Proof. The proof of (III.57) has to be adapted. Fix z0 ∈ Z u
0 and introduce the reward function

f (s, a) := 1((s, a) = z0 or s /∈ S (Z u
0 )) tracking the visits of z0 plus the possibility to exit the

componentZ u
0 . Let g f , h f the associated gain and bias function obtained by iterating the uniform

policy on Z u
0 , extended to the uniform policy outside of S (Z u

0 ). We see that sp(g f |S (Z u
0 )
) = 0

because Z u
0 regardless of whether Z u

0 is communicating in M or not. Denote β := sp(h f ) and
α :=min(g f )> 0.

By design of panic times, there can by at most one i′ ∈ I u such that the co-exploration
episode starting at t = τ j(i′) is not regenerative, i.e., Sτ j(i′)

̸= Sτ j(i′+1)−1+1.
We have:

Nτ j(i+1)
(z0)≥

∑

i′∈I u∩[i]

j(i′+1)−1
∑

j′= j(i′)

f (Sτ j′
, Aτ j′

)

(†)
=

∑

i′∈I u∩[i]

j(i′+1)−1
∑

j′= j(i′)

�

g f (Sτ j′
) +

�

eSτ j′
− p(Sτ j′

, Aτ j′
)
�

h f
�

(‡)
= α

 

∑

i′∈I u∩[i]

(τ j(i′+1)−1 −τ j(i′) + 1)

!

− β +
∑

i′∈I u∩[i]

j(i′+1)−1
∑

j′= j(i′)

�

eSτ j′+1
− p(Sτ j′

, Aτ j′
)
�

h f

(§)
≥ αT u

i − β



1+

√

√

√

T u
i log

�Æ

1+ T u
i

δ

�





where (†) invokes the Poisson equation g f (s, a) + h f = f (s, a) + p(s, a)h f ; (‡) uses that at
most one episode isn’t regenerative and (§) bounds the RHS martingale with a time-uniform

3Recall that Z ′ ⊆ Z is forward closed in M if by starting in a state of S (Z ′) and only playing pairs of Z ′, one
remains in Z ′.
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Azuma-Hoeffding inequality (Lemma I.22) with probability 1−δ, and T u
i is a short-hand for

∑

i′∈I u∩[i](τ j(i′+1)−1 −τ j(i′) + 1). If T u
i is large enough, we have 1

3αT u
i ≥ β since T u

i ≥ i, and

β

√

√

√

T u
i log

�Æ

1+ T u
i

δ

�

<
1
3
αT u

i ⇐⇒ δ > exp

�

−
α
Æ

T u
i

3β
+

1
3

log(1+ T u
i )

�

= o
�

|I u ∩ [i]|−2�.

We conclude accordingly.

(STEP 2) There exists a constant α > 0 such that:

∀i ≥ 1,∀z ∈
⋃

Z0, P
�

Nτ j(i)
(z)< α

p
i
�

= o
�

i−2
�

. (III.67)

Proof. Same proof than (III.58).

(STEP 3) There exists α,β > 0 such that P(αi < j(i) < β i) = 1− o(i−2). In other words, the
number of initial co-exploration times grows at the same speed than the number of co-exploration
times.

Proof. The proof is an adaptation of the (STEP 3) of Section 10.C.3.1 taking into account
that component may not be communicating and are subject to panicking. Consider a initial
co-exploration τ j(i) and denote Z u

0 the current co-explored component. Consider the reward
function f (s, a) := 1(s = Sτ j(i)

or s /∈ S (Z u
0 )) and let g f , h f the associated gain and bias functions

obtained by iterating the uniform policy on the current component Z u
0 . That is, f tracks the

return to the state from which the co-exploration was initiated together with exits of the current
component Z u

0 . We see that sp(g f |S (Z u
0 )
) = 0 because Z u

0 is closed. Denote α1 := sp(h f ) and
α2 :=min(g f )> 0. By design of co-exploration phases, observe that f can be equal to 1 only
once per phase (at initialization). We get:

1=
τ j(i+1)−1
∑

t=τ j(i)

f (St , At)

(†)
=
τ j(i+1)−1
∑

t=τ j(i)

�

g f (St) +
�

eSt
− p(St , At)

�

h f
�

= α1(τ j(i+1)−1 −τ j(i) + 1) +
τ j(i+1)−1
∑

t=τ j(i)

�

eSt+1
− p(St , At)

�

h f .

In the above, (†) follows by the Poisson equation g f (s, a) + h f = f (s, a) + p(s, a)h f . Summing
for i, we find:

i = α1 j(i + 1) +
i
∑

i′=1

τ j(i′+1)−1
∑

t=τ j(i′)

�

eSt+1
− p(St , At)

�

h f

(†)
≥ α1 j(i + 1)−α2

√

√

√

j(i + 1) log

�p

1+ j(i + 1)
δ

�

where (†) bounds the RHS martingale with a time-uniform Azuma-Hoeffding inequality (Lemma I.22)
and holds with probability 1− δ. We get a similar lower-bound. We conclude similarly than
in (STEP 1) by finding a condition on δ > 0 such that the error term is lower than 1

2α1 j(i)
and consider the worst α1,α2 possible (depending on the current component u and initial state
Sτi

).
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This is where the proof significatively deviates from the proof of Lemma III.27.

(STEP 4) Let Z u
0 a component that is not communicating. There exists β > 0 such that

∀δ > 0, P

�

∑

i∈I u

�

τ j(i+1)−1 −τ j(i) + 1
�

≥ β
�

1+ β3 + β2 log
�

1
δ

��

�

≤ δ. (III.68)

Proof. LetZ u
0 a component that is not communicating. For simplicity, denote T u

i :=
∑

i′∈I u∩[i](τ j(i′+1)−1−
τ j(i′) + 1). Consider the reward function f (s, a) := 1(s /∈ S (Z u

0 )) and let g f , h f the associated
gain and bias functions obtained by iterating the uniform policy on Z u

0 , extended to the uniform
policy outside of S (Z u

0 ). Observe that g f = e. Let β := sp(h f ).
By design of panic times, for t ∈ {τ j(i), . . . ,τ j(i+1)−1} we cannot have f (Zt) = 1 if i ∈ I u.

So, for all i ≥ 0,

0=
∑

i′∈I u∩[i]

τ j(i′+1)−1
∑

t=τ j(i′)

f (Zt) =
∑

i′∈I u∩[i]

τ j(i′+1)−1
∑

t=τ j(i′)

�

g f (St) +
�

eSt
− p(Zt)

�

h f
�

≥ T u
i − β +

∑

i′∈I u∩[i]

τ j(i′+1)−1
∑

t=τ j(i′)

�

eSt+1
− p(Zt)

�

h f

(†)
≥ T u

i − β
�

1+
r

T u
i log

�

1+T u
i

δ

�

�

where the last line (†) follows by a time-uniform Azuma-Hoeffding inequality (Lemma I.22)
and holds with probability 1− δ. Making i go to infinity, by monotonicity, we see that T u :=
∑

i∈I u(τ j(i+1)−1 −τ j(i) + 1) satisfies:

∀δ > 0, P
�

T u ≤ β
�

1+
Ç

T u log
�

1+T u

δ

�

��

≤ δ (III.69)

Conclude with straight forward algebra.

We can now conclude. Recall that (τi) is the stopping-time enumeration of T ±(Z0) and that
j(i) is the i-th initial stopping time in the sequence. Combining (STEP 2) and (STEP 3), we
have:

∀z ∈
⋃

Z0, P
�

Nτi
(z)< α

p
i
�

= o
�

i−2
�

(III.70)

for some α > 0. Let u ∈ {1, . . . , m} such that Zm
0 is not communicating. We have:

E

�∞
∑

t=0

1(t ∈ T ±(Z0))

�

= E

�∞
∑

i=0

1(τi <∞)

�

(†)
= E

�∞
∑

i=0

1
�

τi <∞,
�

∀z ∈
⋃

Z0, Nτi
(z)≥ α

p
i
��

�

+O(1)

≤ E

�∞
∑

i=0

1
�

T u ≥ α
p

i
�

�

+O(1)

(‡)
≤
∞
∑

i=0

exp
�

− α
β2

p
i + β(1+ β3)

�

+O(1)<∞

where (†) follows from (III.70) and (‡) from (III.68). This concludes the proof. ■
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T −(t)
0 γ log(T )

γ≪ 1
∥µ0
η(M)∥1 log(T ) log2(T )

BURN-IN∗ NEAR OPTIMAL EXPLORATION†
CO-EXPLORATION TRAVELS‡
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�

e−
p

log(T )
�
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P= o
�

T−2
�

Figure 10.C.1: How the algorithm explores as T −(t) grows.

10.C.4 Proof of Lemma III.26: Visits due to exploration

We start by providing a high level view of the analysis. We fix a precision parameter δ0 > 0 and
some discard coefficient γ > 0.

Standard regime. We start by discarding what happens prior to time γ log(T), during the
BURN-IN period. Afterwards, right starting from time γ log(T ), we invoke a uniform exploration
argument (Lemma III.29) that all pairs have been visited at least αγ log(T ) times with reasonable
probability. This amount of visits is enough to claim that the empirical data is concentrated
enough so that (1) the near optimal pairs are correct with Z ε(t)∗∗ (M̂t) =Z ∗∗(M), (2) we went
beyond the possibility of other panic times with M̂t ∼ M , (3) the exploration measures and
policies are nearly µ0

η(M) and (4) the proxy lower bound is nearly correct with Kε(t)η (M̂t) =
K0
η(M) ± δ0 (Lemma III.30). This event is referred to as the trigger effect and holds with

reasonably high probability 1− o(exp(−
p

log(T ))). The algorithm therefore enters the NEAR

OPTIMAL EXPLORATION period, during which exploration is (3) nearly optimal and (4) the
exploration GLR test will nearly match the true regret lower bound. Once the time horizon
T −(t) ≈ K0

η(M) log(T) is crossed, the exploration GLR test don’t provoke exploration phases
anymore and exploration is only triggered by co-exploration that starts exploration phases to
switch of nearly optimal component. This is the CO-EXPLORATION TRAVELS phase. Thanks to
the prior trigger effect (Lemma III.30), the co-exploration structure given by the nearly optimal
pairs Z ε(t)∗∗ (M̂) is invariant and equal to Z ∗∗(M) during this phase and is shown to account for
about O(log log(T )) exploration times, overall negligible. Therefore, the more likely values for
T −(t) are in the neighborhood of K0

η(M) log(T ).

Failures and the log2(T ) exploration barrier. If the number of exploration times goes beyond
the threshold value K0

η log(T ) +O(log log(T )), it means that either uniform exploration or the

trigger effect failed. We enter the FAIL region. At horizon O(log2(T )), thanks to uniform explo-
ration again (Lemma III.29), every pair is supposed to enter the skeleton, hence will be truncated
during GLR tests. By design of the algorithm, if all pairs are truncated, then GLR tests will all
pass and the algorithm will only exploit. This is referred to as the log2(T )-exploration barrier and
is shown to hold with very high probability 1−o(T−2). Because exp(−

p

log(T )) log2(T ) = o(1),
this region is negligible in the expectation of T −(T ).

Total failures. In case exploration completely fails to be uniform and beyond the log2(T)-
barrier, we enter the BIG FAIL region that has so little probability to happen that it can be
straightforwardly neglected.
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10.C.4.1 Main proof

Pick z /∈ Z ∗∗(M). Its exploration visit count at time t is given by

N−t (z) :=
t−1
∑

i=0

1(Zi = z, i ∈ T −) (III.71)

In the sequel, we write µ∗η := ∥µ0
η(M)∥

−1
1 µ

0
η(M) the normalized optimal η-uniformized explo-

ration measure of M (Theorem III.13) and π∗η the associated optimal exploration policy, given
by π∗η(a|s)∝ µ∗η(s, a). Introduce the following events:

Et :=

�

|T −(t)| ≥ γ log(T )⇒
�

M̂t ∼ M and ∥µε(t)η (M̂t)−µ0
η(M)∥∞ < δ0 min(µ0

η(M))
and Z ε(t)∗∗ (M̂t) =Z ∗∗(M) and |Kε(t)η (M̂t)− K0

η(M)|< δ0

��

(III.72)

E ′t :=

�

inf

¨

∑

z∈Z
Nt(z)KLz(M̂t ||M†) :

M† ∈ Altε(t)(M̂t) and
M† = M̂t on Zt ∪Z ε(t)∗∗ (M̂t)

«

≥ (1+δ(t)) log(t)

�

(III.73)

We write E :=
⋂T−1

t=0 Et and E ′ :=
⋂T−1

t=0 E
′
t . The first family of events (Et) correspond to the

motivated trigger effect and are used to manage during the NEAR OPTIMAL EXPLORATION period.
The second family (E ′t ) accounts tracks moments in time when the exploration GLR test is
passed, when the algorithm move on to the co-exploration test, and will be of use to analyze the
CO-EXPLORATION TRAVELS period.

(STEP 0) For µ ∈ (R∗+)
Z , denote πµ the policy given by πµ(a|s) = (

∑

a′∈A (s)µ(s, a′))−1µ(s, a). Let
δ ∈ (0, 1

2). For µ,µ′ ∈ (R∗+)
Z , if ∥µ′ −µ∥∞ ≤ δmin(µ), then

(1) for all z ∈ Z , (1−δ)µ(z)≤ µ′(z)≤ (1−δ)µ(z) and (1−δ)µ′(z)≤ µ(z)≤ (1+ 2δ)µ′(z);
(2) for all s ∈ S and a ∈A (s), (1− 2δ)πµ(a|s)≤ πµ′(a|s)≤ (1− 2δ)2πµ(a|s).

Proof. This is straight forward algebra.

(STEP 1) Let z /∈ Z ∗∗(M). There exists C > 0 independent of δ0,γ, Tw such that, for all δ > 0,

P

�

∃t < T,
�

�

�N−t (z)− |T
−(t)|µ∗η(z)

�

�

�≤ C

�
r

|T −(t)| log
�

2(1+|T −(t)|)
δ

�

+ 1(E c)|T −(t)|
γ log(T ) +δ0|T −(t)|+ 2

��

≤ δ.

(III.74)
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η(M)∥1 log(T ) log2(T )
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Most likely value

FAIL§

P= o
�

e−
p

log(T )
�
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P= o
�

T−2
�

Proof. We decompose the number of exploration visits as follows. Consider the reward function
f (s′, a′) := 1((s′, a′) = z) and let gz

η, hz
η the gain and bias functions associated to π∗η with reward
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function f . Remark that gz
η = µ

∗
η(z)e. Further denote ∆z

η(s
′, a′) := gz

η(s
′) + hz

η(s
′)− f (s′, a′)−

p(s′, a′)hz
η the associated gap function. Let (τi) the stopping time enumeration of T −. We have:

N−t (z) =
|T −(t)|
∑

i=1

1(Zτi
= z)

(†)
= |T −(t)|µ∗η(z) +

|T −(t)|
∑

i=1

�

eSτi
− p(Zτi

)
�

hz
η

︸ ︷︷ ︸

A t

−
|T −(t)|
∑

i=1

∆z
η(Zτi

)

︸ ︷︷ ︸

Bt

.

where (†) follows by the Poisson equation.
We start by dealing with the error term A t . We expand this term as:

A t =
|T −(t)|
∑

i=1

�

hz
η(Sτi

)− hz
η(Sτi+1

)
�

︸ ︷︷ ︸

A1
t

+
|T −(t)|
∑

i=1

�

hz
η(Sτi+1

)− hz
η(Sτi+1)

�

︸ ︷︷ ︸

A2
t

+
|T −(t)|
∑

i=1

�

eSτi+1
− p(Zτi

)
�

hz
η

︸ ︷︷ ︸

A3
t

(III.75)
The term A1

t is a telescopic sum which is bounded by sp(hz
η) in absolute value. The term A2

t is
bounded by the number of panic times; Indeed, during {τi + 1, . . . ,τi+1 − 1} the algorithm is
either co-explorating or exploitating and both are done until regeneration, unless the algorithm
has panicked. Because the number of panic times is at most |Z |, we get |T 2

t | ≤ sp(hz
η)|Z | a.s.

The term A3
t is a martingale and by a time-uniform Azuma-Hoeffding inequality (Lemma I.22),

we find:

|A3
t | ≤ sp(hz

η)

√

√

|T −(t)| log
�p

1+|T −(t)|
δ

�

≤ sp(hz
η)
r

|T −(t)| log
�

1+|T −(t)|
δ

�

(III.76)

with probability 1−δ, uniformly for t ≥ 0. Combining (III.76) with the previous remarks and
injecting it in (III.75), we obtain:

P
�

∃t ≥ 0, |A t | ≥ sp(hz
η)
�
r

|T −(t)| log
�

1+|T −(t)|
δ

�

+ 1+ |Z |
��

≤ δ. (III.77)

We continue by dealing with the error term Bt . We expand it as:

Bt =
T −(t)
∑

i=1

¬

eZτi
,∆z

η

¶

=
T −(t)
∑

i=1

¬

eZτi
−π−τi

(Sτi
),∆z

η

¶

︸ ︷︷ ︸

B1
t

+
T −(t)
∑

i=1

¬

π−τi
(Sτi
),∆z

η

¶

︸ ︷︷ ︸

B1
t

(III.78)

We recognize a martingale like always, here B1
t that we bound using a time-uniform Azuma-

Hoeffding inequality for a change (Lemma I.22). With probability 1−δ, we have:

|B1
t | ≤ ∥∆

z
η∥∞

√

√

|T −(t)| log
�p

1+|T −(t)|
δ

�

≤ ∥∆z
η∥∞

r

|T −(t)| log
�

1+|T −(t)|
δ

�

. (III.79)

The other term B2
t is decomposed through the trigger effect event E , introduced in (III.72). We

write:

|B2
t |= 1(E )

�

�

�

�

�

⌈γ log(T )⌉∧|T −(t)|
∑

i=1

¬

π−τi
(Sτi
),∆z

η

¶

+
|T −(t)|
∑

i=⌈γ log(T )⌉

¬

π−τi
(Sτi
),∆z

η

¶

�

�

�

�

�

+ 1(E c)

�

�

�

�

�

|T −(t)|
∑

i=1

¬

π−τi
(Sτi
),∆z

η

¶

�

�

�

�

�

≤ 1(E )

 

∥∆z
η∥∞γ log(T ) +

�

�

�

�

�

|T −(t)|
∑

i=⌈γ log(T )⌉

¬

π−τi
(Sτi
),∆z

η

¶

�

�

�

�

�

!

+ 1(E c)∥∆z
η∥∞|T

−(t)|
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(†)
≤ 1(E )

�

�

�

�

�

|T −(t)|
∑

i=⌈γ log(T )⌉

¬

π−τi
(Sτi
)−π∗η(Sτi

),∆z
η

¶

�

�

�

�

�

+ ∥∆z
η∥∞

�

γ log(T ) + 1(E c)|T −(t)|
�

(‡)
≤ ∥∆z

η∥∞
�

|T −(t)|(1(E )δ0 + 1(E c)) + γ log(T )
�

. (III.80)

In the above, (†) uses that 〈π∗η(Sτi
),∆z

η〉 = 0 and (‡) unfolds the definition of E , on which
∥π−τi
(s)−π∗η(s)∥1 ≤ δ0 for i ≥ γ log(T) and s ∈ S . Injecting (III.79) and (III.80) into (III.78)

and combining with (III.77), we obtain the desired result by setting C := sp(hz
η)∨ ∥∆

z
η∥∞.

(STEP 2) Assume that ℓ≥ δ−1
0 (γ log(T ) + 2) +δ−4

0 . Then, for all z ∈ Z ,

P
�

∃t ≥ 0 : N−t (z)< ℓµ
∗
η(z)

�

1− 4Cδ0
µ∗η(z)

�

and |T −(t)| ≥ ℓ and E
�

= exp
�

−δ2
0ℓ+ log(1+ ℓ)

�

,

P
�

∃t ≥ 0 : N−t (z)> ℓµ
∗
η(z)

�

1+ 4Cδ0
µ∗η(z)

�

and |T −(t)| ≥ ℓ and E
�

= exp
�

−δ2
0ℓ+ log(1+ ℓ)

�

(III.81)

where C > 0 is the constant given by (STEP 1).

T −(t)
0 γ log(T )
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�
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�

Proof. This is mostly about rewriting Equation (III.74) of (STEP 1). Fix δ > 0. On E and
provided that |T −(t)| ≥ ℓ, by (III.74) is holds with probability 1−δ that:

N−t (z)≥ |T
−(t)|µ∗η(z)− C

�
r

|T −(t)| log
�

1+|T −(t)|
δ

�

+ γ log(T ) +δ0|T −(t)|+ 2
�

≥ |T −(t)|µ∗η(z)
�

1− Cδ0
µ∗η(z)

− Cγ log(T )
µ∗η(z)|T −(t)|

− C
µ∗η(z)

r

log((1+|T −(t)|)/δ)
|T −(t)|

�

≥ |T −(t)|µ∗η(z)
�

1− Cδ0
µ∗η(z)

− C(γ log(T )+2)
µ∗η(z)|T −(t)|

− C
µ∗η(z)

r

log(1/δ)
|T −(t)| −

C
µ∗η(z)

r

log(1+|T −(t)|)
|T −(t)|

�

(†)
≥ ℓµ∗η(z)

�

1− Cδ0
µ∗η(z)

− C(γ log(T )+2)
µ∗η(z)ℓ

− C
µ∗η(z)

Ç

log(1/δ)
ℓ − C

µ∗η(z)

Ç

log(1+ℓ)
ℓ

�

(‡)
≥ ℓµ∗η(z)

�

1− 4Cδ0
µ∗η(z)

�

where (†) holds by monotonicity in ℓ and (†) holds provided that:

max

¨

C(γ log(T ) + 2)
µ∗η(z)ℓ

,
C

µ∗η(z)

√

√ log(1/δ)
ℓ

,
C

µ∗η(z)

√

√ log(1+ ℓ)
ℓ

«

≤
Cδ0

µ∗η(z)
.

The above holds in particular when:

ℓ≥max

�

γ log(T ) + 2
δ0

,
�

1
δ0

�4
�

and δ ≥ exp
�

−δ2
0ℓ+ log(1+ ℓ)

�

.

Pick δ := exp(−δ2
0ℓ+log(1+ℓ)) to conclude the proof. The lower bound is obtained similarly.
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(STEP 3) Introduce the exploration threshold and the GLR exploration function:

ℓ0 :=max







(1+δ(γ log(T )))∥µ0
η(M)∥1

1−δ0

�

1+ 4C
µ∗η(z)

� · log(T ),
γ log(T ) + 2

δ0
,
�

1
δ0

�4







(III.82)

GLR−(t) := inf

¨

∑

z∈Z
Nt(z)KLz(M̂t ||M†) : M† ∈ Altε(t)(M̂t) and M̂t = M† on Zt ∪Z ε(t)∗∗ (M̂t)

«

(III.83)

Given ℓ0 and GLR−(t) as defined in (III.82) and (III.83) respectively, for all t ≥ 0, we have:
�

N−t (z)≥ ℓ0µ
∗
η(z)

�

1− 4Cδ0
µ∗η(z)

� and |T −(t)| ≥ ℓ0
and E

�

⊆ .
�

GLR−(t)≥ (1+δ(t)) log(T )
and |T −(t)| ≥ ℓ0
and E

�

(III.84)

In other words, passed the exploration threshold ℓ0, the GLR tests “GLR−(t)≥ (1+δ(t)) log(t)?”
deciding exploration will all be passed and none will provoke an exploration phase.

T −(t)
0 γ log(T )

γ≪ 1
∥µ0
η(M)∥1 log(T ) log2(T )

BURN-IN∗ NEAR OPTIMAL EXPLORATION†
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Most likely value

FAIL§

P= o
�

e−
p

log(T )
�

BIG FAIL$

P= o
�

T−2
�

Proof. In light of (III.81), assume that we are on the event:

E ∩
�

∀z ∈ Z : N−t (z)> ℓµ
∗
η(z)

�

1− 4Cδ0
µ∗η(z)

��

. (III.85)

Fix t ≥ 0 and let M† ∈ Altε(t)(M̂t) such that M̂t = M† on the extended skeleton Zt ∪Z ε(t)∗∗ (M̂t).
We have:
∑

z∈Z
Nt(z)KLz(M̂t ||M†)≥

∑

z∈Z
ℓµ∗η(z)

�

1− 4Cδ0
µ∗η(z)

�

KLz(M̂t ||M†)

= ℓ
�

1− 4Cδ0
µ∗η(z)

�
∑

z∈Z

µ0
η(z,M)
∥µ0
η(M)∥1

KLz(M̂t ||M†)

(†)
≥ ℓ

�

1− 4Cδ0
µ∗η(z)

�
∑

z∈Z

(1−δ0)µε(t)η (z,M̂t )
∥µ0
η(M)∥1

KLz(M̂t ||M†)

(‡)
≥ ℓ ·

�

1− 4Cδ0
µ∗η(z)

�

(1−δ0)∥µ0
η(M)∥

−1
1 ≥ ℓ

�

1−δ0

�

1+ 4C
µ∗η(z)

��

∥µ0
η(M)∥

−1
1 .

(III.86)

In (†), relate µ0
η(z, M) to µε(t)η (z, M̂t) by using the definition of E and (STEP 0). In (‡), we use

the fact µε(t)η (M̂t) is an exploration measure and that M† ∈ Cnfε(t)(M̂t) so that
∑

z∈Z
µε(t)η (z, M̂t)KLz(M̂t ||M†)≥ 1.

Continuing (III.86), we have:

ℓ
�

1−δ0

�

1+ 4C
µ∗η(z)

��

∥µ0
η(M)∥

−1
1 ≥ (1+δ(t)) log(T ) ⇐⇒ ℓ≥

(1+δ(t))∥µ0
η(M)∥1

1−δ0

�

1+ 4C
µ∗η(z)

� · log(T ).



172 Chapter 10. ECoE: A nearly asymptotically optimal algorithmic scheme

In order to apply (III.81), we need to have ℓ≥ δ−1
0 γ log(T )≥ γ log(T ) hence we can lower bound

δ(t) by δ(γ log(T )). We recover the definition of ℓ0, see (III.82). We conclude accordingly.

(STEP 4) Introduce the initial co-exploration GLR function:

GLR±(t) := inf

¨

∑

z∈Z
Nt(z)KLz(M̂t ||M†) : M† ∈ Altε(t)(M̂t) and M̂t = M† on Zt

«

(III.87)

We say that t is an initial co-exploration travel time (t ∈ T −co ) if it is an exploration time triggered by
the co-exploration rule forcing exploration by trying to reach a sub-visited component of Z ε(t)∗∗ (M̂t).
More formally, t ∈ T −co if (1) t ∈ T − with (2) Zt ∈ Z ε(t)∗∗ (M̂t), (3) GLR−(t) > (1+ δ(t)) log(t)
and (4) GLR±(t)≤ (1+δ(t)) log(t). Let

Ico(T ) :=
�

�

�

t < T : t ∈ T −co and |T −(t)| ≥ ℓ0

	�

� (III.88)

the number of initial co-exploration travel times prior to time T and happening after the exploration
threshold |T −(t)| ≥ ℓ0. There exist constants α,β > 0 independent of δ0,γ, T such that:

P
�

|T −(T )| ≥ ℓ0 + β
�

|Ico(T )|+
Æ

log(T )
�

,E
�

= o
�

exp
�

−α
Æ

log(T )
��

(III.89)
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Most likely value

FAIL§

P= o
�

e−
p

log(T )
�
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P= o
�

T−2
�

Proof. Consider the event:

E ∗ := E ∩
�

∀z ∈ Z , |T −(t)| ≥ ℓ0⇒ N−t (z)≥ ℓ0µ
∗
η(z)

�

1− 4Cδ0
µ∗η(z)

��

. (III.90)

Consider the stopping time enumeration of T − starting from T −(t) = ⌈ℓ0⌉. More formally:

τ1 := inf
�

t ∈ T − : |T −(t)| ≥ ℓ0

	

and τ j+1 := inf
�

t ∈ T − : t > τ j

	

.

The sequence (τ j) is partitionned into segments on which τ j+1 = τ j + 1. Let j(i) the starting
index of the i-th segment of (τ j). Since τ j ≥ τ1 for all j, we have T −(τ j) ≥ ℓ0. So, on E ∗,
it follows from (III.84) that every segment {τ j(i), . . . ,τ j(i+1)−1} must be initiated by a initial
co-exploration travel time for i ≥ 2, i.e., τ j(i) ∈ T −co for all i ≥ 2. Hence:

(∗) On E ∗, the number of segments {τ j(i), . . . ,τ j(i+1)−1} up to T is at most 1+ |Ico(T )|.

Meanwhile, every segment {τ j(i), . . . ,τ j(i+1) − 1} ends when Sτ j(i+1)
hits the states spawned by

the current nearly optimal pairs Z ε(t)∗∗ (M̂t), when the algorithm switches back to co-exploration
or exploitation. Remarkably, by design of E and since T −(t)≥ ℓ0 ≥ γ log(T ), the nearly optimal
pairs have converged to Z ∗∗(M). From this, observe that

(∗∗) On E ∗, the time segment {τ j(i), . . . ,τ j(i+1)−1} can be, in the worst case, as long as the time
required to reach the least visited component of Z ∗∗(M) because as soon as it is reached,
the algorithm will exploit or co-explore the component.
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Let Z 1
∗∗(M), . . . ,Zm

∗∗(M) the components of Z∗∗(M). Since, on E , M̂t ∼ M with Z ε(t)∗∗ (M̂t) =
Z ∗∗(M), the lattest are also the components of Z ε(t)∗∗ (M̂t) as estimated by the algorithm. Let
m(t) the component St is on at time t, if any (if it exists, it has to be unique). The least visited
component at time t is denoted m−(t) := min{c : min{Nt(z) : z ∈ Z c

∗∗(M)} = min{Nt(z) : z ∈
Z ∗∗(M)}}.

Given i ≥ 1, we introduce the reward function f i(z) := 1(z ∈ Zm−(τi)
∗∗ (M)) marking the least

visited component. Let g i, hi the gain and bias functions under this reward function obtained
by iterating the optimal exploration policy π∗η. Its gap function is ∆i(s, a) := g i(s) + hi(s)−
f i(s, a)− p(s, a)hi. Let β i := sp(hi)∨ ∥∆i∥∞ and denote β <∞ the maximum value that β i

can take over all (finitely many) values that f i can take. We further have g i = αie for some
αi > 0 and pick α > 0 the minimal value that αi can take. Invoking (∗), we have:

0≥ 1(E ∗)
τ j(i+1)−1
∑

t=τ j(i)

f i(Zt)

(†)
= 1(E ∗)

τ j(i+1)−1
∑

t=τ j(i)

�

αi +
�

eSt
− p(Zt)

�

hi −∆i(Zt)
�

(‡)
≥ 1(E ∗)

�

α
�

τ j(i+1)−1 −τ j(i) + 1
�

− β
�

+ 1(E ∗)
τ j(i+1)−1
∑

t=τ j(i)

�

eSt+1
− p(Zt)

�

hi

− 1(E ∗)
τ j(i+1)−1
∑

t=τ j(i)




eZt
−π−t (St),∆

i
�

− 1(E ∗)
τ j(i+1)−1
∑

t=τ j(i)

¬

π−t (St)−π∗η(St),∆
i
¶

(§)
≥ 1(E ∗)

 

αTi − β(δ0Ti + 1) +
τ j(i+1)−1
∑

t=τ j(i)

�

eSt+1
− p(Zt)

�

hi +
τ j(i+1)−1
∑

t=τ j(i)




eZt
−π−t (St),∆

i
�

!

where (†) uses the Poisson equation, (‡) is just rewriting and (§) invokes the definition of E to
upper bound ∥π−t (St)−π∗η(St)∥1 while introducing the shorthand Ti := τ j(i+1)−1 −τ j(i) + 1. We
sum over i and we have 1+ |Ico(T )| by (∗∗) on E ∗. We obtain:

0≥ 1(E ∗)

 

(α− βδ0)
∑

i

Ti − β(1+ |Ico(T )|) +
∑

i

τ j(i+1)−1
∑

t=τ j(i)

��

eSt+1
− p(Zt)

�

hi +



eZt
−π−t (St),∆

i
��

!

.

(III.91)
By a time-uniform Azuma-Hoeffding inequality, with probability δ > 0, we have:

∑

i

τ j(i+1)−1
∑

t=τ j(i)

��

eSt+1
− p(Zt)

�

hi +



eZt
−π−t (St),∆

i
��

≥ −2β
√

√

∑

i

Ti log
�

1+
∑

i Ti

δ

�

. (III.92)

Observe that α,β are independent of the choice of γ,δ0 and T hence we can assume that
α− βδ0 > 0 up to reducing δ0. So, on E ∗ and with probability 1−δ, (III.91) is rewritten as an
equation of the form:

u≤ λ1 +
Æ

λ2u log(1+ u) +
Æ

λ3u

where u =
∑

i Ti, λ1 = (α − βδ0)−1β(1 + |Ico(T)|), λ2 = (α − βδ0)−1 · 4β2 and λ3 = (α −
βδ0)−1 log

�

1
δ

�

. The right-hand side can be decoupled by solving the weaker pair of equations:

u≤ λ1 + 2
Æ

λ2u log(1+ u) and u≤ λ1 + 2
Æ

λ3u.
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Using log(1+u)≤
p

u, we find u≤max(2(λ1+4λ3), 2λ1, 256λ2
2). In other words, with probability

1−δ, we have:

1(E ∗)|T −(T )| ≤ ℓ0 +
2β

α−βδ0
(1+ |Ico|(T )) +

8
α−βδ0

log
�

1
δ

�

+ 256
�

4β2

α−βδ0

�2
. (III.93)

Picking δ = Θ
�

exp
�

−
p

log(T )
��

, we obtain the result.

(STEP 5) The number of initial co-exploration travel times prior to time T and happening after
the exploration threshold |T −(t)| ≥ ℓ0, see (III.88), satisfy:

P(|Ico(T )|> |S |(1+ 2 log log(T )),E )≤ exp
�

−δ2
0ℓ0 + log(1+ ℓ0)

�

. (III.94)
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�
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�
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�

Proof. We consider similar notations than in the proof of (STEP 4). We consider the event E ∗
introduce in (III.90) and the stopping time enumeration of T − starting from T −(t) = ⌈ℓ0⌉.
More formally:

τ1 := inf
�

t ∈ T − : |T −(t)| ≥ ℓ0

	

and τ j+1 := inf
�

t ∈ T − : t > τ j

	

.

Again, on E ∗, it follows from (III.84) that every segment {τ j(i), . . . ,τ j(i+1)−1}must be initiated by
a initial co-exploration travel time for i ≥ 2, i.e., τ j(i) ∈ T −co for all i ≥ 2. Let Z 1

∗∗(M), . . . ,Zm
∗∗(M)

the components of Z∗∗(M). Since, on E , M̂t ∼ M with Z ε(t)∗∗ (M̂t) =Z ∗∗(M), the lattest are also
the components of Z ε(t)∗∗ (M̂t) as estimated by the algorithm. Let m(t) the component St is on at
time t, if any (if it exists, it has to be unique). The least visited component at time t is denoted
m−(t) :=min{c : min{Nt(z) : z ∈ Z c

∗∗(M)}=min{Nt(z) : z ∈ Z ∗∗(M)}}. Denote

Lτ j(i),c := log min
¦

Nτ j(i)
(z) : z ∈ Z c

∗∗

©

, c ∈ {1, . . . , m}. (III.95)

Remark that, on E ∗, Lτ j(i),c satisfies the following pair of equations:

¨

Lτ j(i),m(τ j(i)) ≤ 2minc Lτ j(i),c

Lτ j(i+1),m(τ j(i)) > 2minc Lτ j(i),c
i ≥ 2. (III.96)

By induction, we deduce Lτ j(i),c ≥ 2⌊(i−1)/m⌋. Moreover, if τ j(i) < T , we have Lτ j(i),c ≤ log(T ) for
all c = 1, . . . , m. Last but not least, remember from (STEP 4) that on E ∗, the number of segments
{τ j(i), . . . ,τ j(i+1)−1} up to T is at most 1+ |Ico(T )|. So, on E ∗.

|Ico(T )| ≤ m
�

1+ log log(T )
log(2)

�

≤ |S |(1+ 2 log log(T )).

This all happens on E ∗. Conclude with (STEP 2), see (III.81).

We can finally conclude the proof. By (STEP 4), see (III.89), there exists an event E ′ with
P(E ′c∩E ) = o(exp(−α

p

log(T ))) on which |T −(T )| ≤ ℓ0+β(|Ico(T )|+
p

log(T )). Furthermore,
α,β > 0 are independent of the choice of δ0,γ and T . Up to intersecting events, on E ′ ∩E we
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further have the bound on |Ico(T )| provided by (STEP 5), see (III.94). Still up to intersecting
events again, we can further assume that the upper-bound of (STEP 2), see (III.81) holds, while
still guaranteeing P(E ′c ∩E ) = o(exp(−α

p

log(T ))). We obtain the bound:

1(E ′ ∩E )N−T (z)≤ ℓ0µ
∗
η(z)

�

1+ 4Cδ0
µ∗η(z)

�

+ 2β |S |(1+ log log(T )) + β
Æ

log(T ). (III.97)

Outside of E ′ ∩ E , we upper bound N−T (z) almost surely by |T −(T)|, itself bounded using
the log2(T)-exploration barrier (Lemma III.31), that bounds it by C log2(T) with probability
1− o(T−2). If the log2(T )-exploration barrier fails, we upper-bound |T −(T )| by trivial bound T .
Taking the expectation, we obtain:

E[|T −(T )|]≤ ℓ0µ
∗
η(z)

�

1+ 4Cδ0
µ∗η(z)

�

+O
�
Æ

log(T )
�

+ (P(E ′c ∩E ) +P(E c)) · C log2(T ) + o(T · T−2).
(III.98)

By the trigger effect (Lemma III.30), we know that P(E c) = o(exp(−
p

log(T ))). Using this and
unfolding the definition of the exploration threshold ℓ0 (see (III.82)), we get:

E[N−T (z)]≤ ℓ0µ
∗
η(z)

�

1+ 4Cδ0
µ∗η(z)

�

+O
�
Æ

log(T )
�

+ o
�

exp
�

−
Æ

log(T )
��

· C log2(T ) + o(T · T−2)

= ℓ0µ
∗
η(z)

�

1+ 4Cδ0
µ∗η(z)

�

+O
�
Æ

log(T )
�

=max







(1+δ(γ log(T )))∥µ0
η(M)∥1

1−δ0

�

1+ 4C
µ∗η(z)

� · log(T ),
γ log(T ) + 2

δ0







µ∗η(z)
�

1+ 4Cδ0
µ∗η(z)

�

+O
�
Æ

log(T )
�

.

(III.99)

Unfolding the definition of µ∗η(z) and using that δ(γ log(T ))∼ 1
log log(T ) → 0, we get:

limsup
T→∞

E
�

∑T−1
t=0 1(Zt = z, t ∈ T −)

�

log(T )
= limsup

T→∞

E[N−T (z)]

log(T )
≤

1+ 4Cδ0
µ∗η(z)

1−δ0

�

1+ 4C
µ∗η(z)

� ·µ0
η(z, M) +

γ

δ0
.

(III.100)
This bound holds for arbitrary γ,δ0 that are small enough. Make the discard coefficient γ→ 0,
then the precision parameter δ0→ 0. This concludes the proof. ■

10.C.4.2 Uniform exploration guarantees

Lemma III.29 (Uniform exploration). There exists constants α,β > 0 such that:

P
�

∃z ∈ Z ,∃t ≥ 0 : Nt(z)< αℓ and |T −(t)| ≥ ℓ
�

= o(exp(−βℓ)). (III.101)

Proof. The proof shares similarities with Lemma III.21. We consider the model Mη with pair
space Z which kernels given by:

pη(s, a) := (1−η|A (s)|)p(s, a) +η
∑

a′∈A (s)

p(s, a′).

The obtained model Mη is communicating, because the execution of the fully uniform policy on
Mη is equivalent to the execution of the uniform policy on M . By construction, the execution of
any η-uniform policy π of M can be seen as the execution of a randomized policy πη of Mη.
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Fix z0 ∈ Z and introduce the reward function f (z) := 1(z = z0). Consider the model M− f
η

with kernel pη and reward function − f . Let g− f
η , h− f

η ,∆− f
η the associated gain, bias and gap

functions. Because M− f
η is communicating, sp(g− f

η ) = 0 and by picking πη a deterministic bias

optimal policy of M− f
η , we have by construction that πη corresponds to an η-uniform policy of

M under which all pairs are recurrent; so z0 is recurrent under πη in particular, and min(g− f
η ) =

max(g− f
η ) =: −αx0

< 0. Consider the gaps ∆− f (s, a) := g− f
η (s) + h− f

η (s) + f (s) − p(s, a)h− f
η .

Following from the Bellman equations of M− f
η , check that every η-uniform policy π satisfies:

∑

a∈A (s)

πη(a|s)∆− f
η (s, a) =

∑

a∈A (s)

π(a|s)∆− f (s, a)≥ 0 (III.102)

where πη is the randomized policy induced by π (i.e., bissimulating) in Mη. Let βz0
:=

max(sp(h− f
η ), |∆

− f |)<∞. Let (τi) the stopping time enumeration of T −. We have:

Nt(z0) =
∞
∑

i=0

1(τi < t) f (Sτi
, Aτi
)

=
∞
∑

i=0

1(τi < t)
�

−g− f
η (Sτi

) +
�

p(Sτi
, Aτi
)− eSτi

�

h− f
η +∆

− f (Sτi
, Aτi
)
�

= αz0
|T −(t)|+

∞
∑

i=0

1(τi < t)
�

p(Sτi
, Aτi
)− eSτi

�

h− f
η

︸ ︷︷ ︸

A1

+
∞
∑

i=0

1(τi < t)∆− f (Sτi
, Aτi
)

︸ ︷︷ ︸

A2

.

We control the error terms as follows. We start with A1.

A1 ≥ −βx0
+
∞
∑

i=0

1(τi < t)
�

h− f
η (Sτi+1)− h− f

η (Sτi+1
)
�

+
∞
∑

i=0

1(τi < t)
�

p(Sτi
, Aτi
)− eSτi+1

�

h− f
η

(†)
= −(1+ |Z |)βx0

+
∞
∑

i=0

1(τi < t)
�

p(Sτi
, Aτi
)− eSτi+1

�

h− f
η

where (†) follows from the observation that, between exploration times, the algorithm is either
co-explorating or exploiting. When it does, it does it until regeneration hence coming back to
the state where exploration was suspended; At the exception of phases killed by panicking, but
there are at most |Z | of them. We continue with A2.

A2 :=
∞
∑

i=0

1(τi < t)∆− f (Sτi
, Aτi
)

=
∞
∑

i=0

1(τi < t)
∑

a∈A (Sτi
)

π−τi
(a|Sτi

)∆− f (Sτi
, a)

+
∞
∑

i=0

1(τi < t)
∑

a∈A (Sτi
)

�

1(Aτi
= a)−π−τi

(a|Sτi
)
�

∆− f (Sτi
, a)

(†)
≥
∞
∑

i=0

1(τi < t)
∑

a∈A (Sτi
)

�

1(Aτi
= a)−π−τi

(a|Sτi
)
�

∆− f (Sτi
, a)

where (†) follows from (III.102). We conclude that A1 and A2 both involve martingale obtained
as the sum of |T −(t)| martingales differences whose terms have span at most βz0

. Invoking a
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time-uniform Azuma-Hoeffding inequality (Lemma I.22) to bound each of them, we find that

Nt(z0)≥ αz0
|T −(t)| − (1+ |Z |)βz0

− 2βz0

√

√

|T −(t)| log
�

1+ |T −(t)|
δ

�

(III.103)

holds with probability 1−δ at least. From (III.103), we get that for a fixed ℓ ∈ N,

P
�

∃t ≥ 0; Nt(z0)< αz0
ℓ− (1+ |Z |)βz0

− 2βz0

Ç

ℓ log
�

1+ℓ
δ

�

and |T −(t)| ≥ ℓ
�

≤ δ. (III.104)

For ℓ large enough, we have (1+ |Z |)βz0
< 1

3αz0
ℓ. Also, straight forward algebra gives:

2βz0

Ç

ℓ log
�

1+ℓ
δ

�

< 1
3αz0

ℓ⇔ δ > exp
�

−
�

αz0
6βz0

�2
ℓ+ log(1+ ℓ)

�

.

Accordingly, the tail of (III.104) is eventually sub-exponential, from which the result follows.

10.C.4.3 The trigger effect

T −(t)
0 γ log(T )

γ≪ 1
∥µ0
η(M)∥1 log(T ) log2(T )

BURN-IN∗ NEAR OPTIMAL EXPLORATION†
CO-EXPLORATION TRAVELS‡

Most likely value

FAIL§

P= o
�

e−
p

log(T )
�

BIG FAIL$

P= o
�

T−2
�

Lemma III.30 (Trigger effect). The event E ≡ Eε0,γ,T given by:

E :=



∀t ≤ T, |T −(t)| ≥ γ log(T )⇒





Z ε(t)∗∗ (M̂t) =Z ∗∗(M) and M̂t ∼ M and
∥µε(t)η (M̂t)−µ0

η(M)∥∞ < ηε0 and
|Kε(t)η (M̂t)− K0

η(M)|< ε0









For all ε0,γ > 0, we have P(E c) = o
�

exp
�

−
p

log(T )
��

when T →∞.

Proof. The result is a combination of Lemma III.36 and Proposition III.12 and Theorem III.13.
Fix ε > 0. By Proposition III.12 and Theorem III.13, there exists ε′0 > 0 such that, if ε(t)< ε′0
and

KL∗(M̂t ||M) +
1
ε(t)∥M̂t −M∥∗ < ε′0 (III.105)

then

(∗) :=

�

Z ε(t)∗∗ (M̂t) =Z ∗∗(M) and M̂t ∼ M and
∥µε(t)η (M̂t)−µ0

η(M)∥∞ < ηε0 and |Kε(t)η (M̂t)− K0
η(M)|< ε0

�

holds. Because we are interested in times t ≤ T , we can lower bound ε(t) by 1
log log(T ) . By

Pinsker’s inequality, we can bound ∥M̂t − M∥∗ by (KL∗(M̂t ||M))1/2 and up to assuming that
ε′0 < 1, we can change KL∗(M̂t ||M) to KL∗(M̂ ||M) in (III.105), to simplify (III.105) to:

KL∗(M̂t ||M)≤
�

1
2

�2
ε′20 ε(T )

2 =

�

ε′0
2 log log(T )

�2

. (III.106)

We now proceed as follows:

P(E c) := P(∃t ≤ T, |T −(t)| ≥ γ log(T ) and (∗) is wrong)
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≤ P
�

∃t ≥ 0 :
min(Nt)< αγ log(T ) and
|T −(t)| ≥ γ log(T )

�

+ P
�

∃t ≤ T :
min(Nt)≥ αγ log(T ) and

(∗) is wrong

�

(†)
≤ o(exp(−βγ log(T ))) + P

�

∃t ≤ T :
min(Nt)≥ αγ log(T ) and

KL∗(M̂t ||M)>
�

1
2

�2
ε′20 ε(T )

2

�

(‡)
≤ o(exp(−βγ log(T ))) + P

�

∃t ≤ T :
min(Nt)≥ αγ log(T ) and

KL(M̂t ||M)>
�

1
2

�2
ε′′20 ε(T )

2

�

(§)
≤ o(exp(−βγ log(T ))) + 2|Z |exp

�

− αγ log(T )ε′′20
4|S | log log(T )2 + log(1+αγ log(T )) + 1

�

= o
�

exp
�

−
Æ

log(T )
��

.

In the above, (†) bounds the left term using Lemma III.29 and the right term using (III.106),
(‡) invokes Lemma III.37 by replacing ε′0 to an eventually smaller ε′′0 , and (§) follows from
concentrability results (Lemma III.36).

10.C.4.4 The log2(T ) exploration barrier

T −(t)
0 γ log(T )

γ≪ 1
∥µ0
η(M)∥1 log(T ) log2(T )

BURN-IN∗ NEAR OPTIMAL EXPLORATION†
CO-EXPLORATION TRAVELS‡

Most likely value

FAIL§

P= o
�

e−
p

log(T )
�

BIG FAIL$

P= o
�

T−2
�

Lemma III.31 (log2(T ) exploration barrier). There exists a constant C > 0 such that:

P
�

∃t ≤ T : |T −(t)| ≥ C log2(T )
�

= o
�

T−2
�

. (III.107)

Proof. Let (τ j) the stopping time enumeration of T −. The sequence (τ j) is made of segments
where τ j+1 = τ j + 1 and we denote τ j(i) the starting index of the i-th segment. Let α,β > 0 the
constants provided by Lemma III.29. Introduce the event:

Et :=
�

Z ε(t)∗∗ (M̂t) =Z ∗∗(M) and Zt =Z
�

,

stating that the skeleton Zt is equal to Z and that the near optimal pairs are equal to Z ∗∗(M),
i.e., that the coexploration structure is correct. We have:

|T −(T )|=
T−1
∑

t=0

1(t ∈ T −) =
∞
∑

i=1

j(i+1)−1
∑

j′= j(i)

1(τ j′ < T )

≤
log2(T )
α

+
∞
∑

i=1

j(i+1)−1
∑

j′= j(i)

1
�

log2(T )
α ≤ τ j′ < T and Eτ j′

�

︸ ︷︷ ︸

A

+T · 1
�

∃ j′ ≥ log2(T )
α ,τ j′ < T and E c

τ j′

�

︸ ︷︷ ︸

B

.

In light of the proof of the trigger effect (Lemma III.30) and by Proposition III.12, there
exists ε′0 > 0 such that, if ε(T )≤ ε(t)< ε′0 and

KL∗(M̂t ||M)≤
�

1
2

�2
ε′20 ε(T )

2 =

�

ε′0
2 log log(T )

�2

(III.108)
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then Z ε(t)∗∗ (M̂t) =Z ∗∗(M). holds. By Proposition III.12 then invoking again the arguments of
the proof of Lemma III.30, there exists ε′0 > 0 such that if ε(T) ≤ ε(t) < ε′0 and t ≤ T , the
condition

KL∗(M̂t ||M)≤
�

1
2

�2
ε′20 ε(T )

2 =

�

ε′0
2 log log(T )

�2

(III.109)

implies (∗). We now proceed as follows:

P(E c) := P(∃t ≤ T, |T −(t)| ≥ γ log(T ) and (∗) is wrong)

≤ P
�

∃t ≥ 0 :
min(Nt)< αγ log(T ) and
|T −(t)| ≥ γ log(T )

�

+ P
�

∃t ≤ T :
min(Nt)≥ αγ log(T ) and

(∗) is wrong

�

(†)
≤ o(exp(−βγ log(T ))) + P

�

∃t ≤ T :
min(Nt)≥ αγ log(T ) and

KL∗(M̂t ||M)>
�

1
2

�2
ε′20 ε(T )

2

�

(‡)
≤ o(exp(−βγ log(T ))) + P

�

∃t ≤ T :
min(Nt)≥ αγ log(T ) and

KL(M̂t ||M)>
�

1
2

�2
ε′′20 ε(T )

2

�

(§)
≤ o(exp(−βγ log(T ))) + 2|Z |exp

�

− αγ log(T )ε′′20
4|S | log log(T )2 + log(1+αγ log(T )) + 1

�

= o
�

exp
�

−
Æ

log(T )
��

.

In the above, (†) bounds the left term using Lemma III.29 and the right term using (III.106),
(‡) invokes Lemma III.37 by replacing ε′0 to an eventually smaller ε′′0 , and (§) follows from
concentrability results (Lemma III.36).

10.C.5 Adaptations of standard concentration results

Lemma III.32 (log2-concentration). We have:

P
�

∃z ∈ Z : Nt(z)> log2(t) and KL(M̂t(z)||M(z))> ε
�

= o
�

t−
ε log(t)

2|S |

�

. (III.110)

Proof. Recall that KL(M̂t(z)||M(z)) = KL(r̂t(z)||r(z)) + KL(p̂t(z)||p(z)). Let q ∈ {r, p} and let d
the dimension of q, that is either 2 or |S |. By Lemma III.36, we have:

P
�

Nt(z)≥ log2(t) and KL(q̂t(z)||q(z))> ε
�

≤ exp

�

−
ε log2(t)

d − 1
+ log(1+ log2(t)) + 1

�

.

Observe that the right-hand side is o
�

t−
ε log(t)
2(d−1)

�

when t →∞.

Lemma III.33 (All time Sanov). For n ∈ (N∗)Z , denote M̂ n the empirical model obtained with
visits counts Nt(z) = n(z) for all z ∈ Z . LetM n the discrete space of all models that M̂ n can be
equal to. Then:

∀M ′ ∈M n, P
�

M̂ n = M ′
�

≤ exp

�

−
∑

z ∈Z
n(z)KL(M ′(z)||M(z))

�

. (III.111)

Proof. For m≥ 1, write rm(z) and pm(z) the empirical reward and kernel at z that are observed
under Nt(z) = m. Recall that KL(M̂t(z)||M(z)) = KL(r̂t(z)||r(z)) + KL(p̂t(z)||p(z)). We have:

P
�

M̂ n = M ′
�

=
∏

z∈Z
P
�

r̂n(z)(z) = r ′(z)
�

P
�

p̂n(z)(z) = p′(z)
�

. (III.112)
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By definition, r ′(z) is of the form B(k(z)/n(z)) with k ∈ {0, ..., n(z)}. So:

P
�

r̂n(z) = r ′(z)
�

=
�

n(z)
k(z)

�

r(z)k(z)(1− r(z))n(z)−k(z)

= exp(−n(z)KL(r ′(z)||r(z))) ·
�

n(z)
k(z)

�

exp
�

−n(z)Ent(r ′(z))
�

(†)
≤ exp(−n(z)KL(r ′(z)||r(z)))

where (†) follows from the classical inequality
�a

b

�

≤ exp(aEnt( b
a )) where Ent(−) is the entropy

(in base e). With the same computation for kernels, we show that:

P
�

p̂n(z)(z) = p′(z)
�

≤ exp(−n(z)KL(p′(z)||p(z))).

Combining everything, we obtain the result.

Lemma III.34 (Combinatorics). Let k ≥ 1 and denote Pn[k] the set of probability distributions
over {1, . . . , k} of the form ( n1

n , . . . , nk
n ) with ni ∈ N. Then |Pn[k]| ≤ (n+ 1)k.

Lemma III.35 (Time-uniform empirical likelihood deviations, Jonsson et al. (2020)). Let d ≥ 1.
Fix q a distribution on {1, . . . , d} and denote qn the empirical distribution on {1, . . . , d} obtained
after n i.i.d. samples of q.

∀δ > 0, P
�

∃n≥ 1, nKL(qn||q)> log
�

1
δ

�

+ (d − 1) log
�

e
�

1+ n
d−1

���

≤ δ. (III.113)

Lemma III.36 (Threshold concentration). Let m≥ 0 and d ≥ 2. Fix q a distribution on {1, . . . , d}
and denote qn the empirical distribution on {1, . . . , d} obtained after n i.i.d. samples of q. Then:

∀ε > 0, P(∃n≥ m : KL(qn||q)> ε)≤ exp
�

−
εm

d − 1
+ log(1+m) + 1

�

. (III.114)

Proof. By Lemma III.35, we have:

δ ≥ P
�

∃n≥ m, nKL(qn||q)≥ (d − 1) log
�

e
δ

�

1+ n
d−1

���

≥ P
�

∃n≥ m, KL(qn||q)≥ d−1
n log

�

e
δ (1+ n)

��

(†)
≥ P(∃n≥ m, KL(qn||q)≥ ε)

where (†) if for all n≥ m, we have:

d−1
n log

�

e
δ (1+ n)

�

≤ ε.

Solving in δ > 0, we get the necessary condition that, for all n≥ m, we have:

δ ≥ e(1+ n)exp
�

− εn
d−1

�

=: ϕ(n)

By computing derivates, we find that ϕ(n) is decreasing on ( d−1
ε − 1,∞), so for m≥ d−1

ε − 1,
we may set δ = e(1+m)exp(− εm

d−1). For m< d−1
ε − 1, we see that e(1+m)exp(− εm

d−1)≥ 1.

Lemma III.37 (Converting KL∗ to KL.). Let d ≥ 2 and fix q a distribution on {1, . . . , d}. Denote
ε :=min{q(i) : q(i)> 0}> 0. If

KL(q′||q)< log
�

1
1− ε

�

then q ∼ q′, i.e., they have the same support and KL(q′||q) = KL∗(q′||q).
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Proof. It is known that if KL(q′||q) < ∞, then q′ ≪ q. Assume that the support of q′ is
S ′ ⊆ {1, . . . , d} and isn’t equal to the one of q. Consider the optimization problem: minimize
KL(q∗||q) subject to supp(q∗) = S ′. Using KKT conditions, we find that q∗ and q must be
proportional. So:

KL(q′||q) =
∑

i∈S

q′(i) log
�

q′(i)
q(i)

�

≥
∑

i∈S

q(i)
∥q∥1,S ′

log

�

1
∥q∥1,S ′

�

= log

�

1
∥q∥1,S ′

�

≥ log
�

1
1− ε

�

hence proving the result.

10.D Deviation bounds of MDP specific quantities

The goal of this section is to provide a complete machinery to bound the variations of various
policy related quantities, such as the gain, the bias, the diameter, the invariant measure and the
reaching probabilities. One important consequence of the developed results is that if M , M ′ are
two Markov decision processes, then

Z ε∗∗(M
′) =Z ∗∗(M) when D∗(M)∥M ′ −M∥∗≪ ε (III.115)

where D∗(M) is a notion of worst diameter (Equation (III.131)), and ε > 0 is smaller than the
gain gap of M . This shows that the near optimal pairs of M ′ can be explicitly related to the
optimal pairs of M (Proposition III.48). The order of magnitude is tight in a minimax sense,
although D∗(M) could be changed to D(M).4 Similarly, we can show

∆ε∗(z, M ′) =∆∗(z, M) +O
�

D∗(M)
2∥M ′ −M∥∗

�

when D∗(M)∥M ′ −M∥∗≪ ε (III.116)

which is also tight in order in magnitude (Proposition III.49). All bounds are developed using
a martingale technique coupled with a Poisson equation, sometimes under a transform of the
initial kernel and reward function. To provide a general flavor of the technique, consider two
Markov reward processes (r1, p1) and (r2, p2), and denote g j, h j their respective gain and bias
functions. We have the Poisson equation g j(s) + h j(s) = r j(s) + p j(s)h j. We write St the random
state at time t, and P

p j
s (−),E

p j
s [−] the probability and expectation of the trajectory governed

by p j initialized at S1 = s. Consider a stopping time τ such that Ep2
s [τ]<∞. The heart of the

technique lies in the following computation:

(−) := Ep2
s

�

τ−1
∑

t=1

r2(St)

�

= Ep2
s

�

τ−1
∑

t=1

(r2(St)− r1(St))

�

+ Ep2
s

�

τ−1
∑

t=1

r1(St)

�

(†)
= Ep2

s

�

τ−1
∑

t=1

(r2(St)− r1(St))

�

+ Ep2
s

�

τ−1
∑

t=1

�

g1(St) +
�

eSt
− p1(St)

�

h1

�

�

= Ep2
s

�

τ−1
∑

t=1

g1(St)

�

+ Ep2
s

�

τ−1
∑

t=1

(r2(St)− r1(St))

�

+ Ep2
s

�

τ−1
∑

t=1

(p2(St)− p1(St))h1

�

+ Ep2
s [h1(s)− h1(Sτ)]

(‡)
≤ Ep2

s

�

τ−1
∑

t=1

g1(St)

�

+ Ep2
s [h1(s)− h1(Sτ)] + Ep2

s [τ]
�

∥r2 − r1∥∞ +
1
2sp(h1)∥p2 − p1∥1

�

4The proof would need to be improved. Because this is meant to be applied for the qualitative regret upper
bound, we don’t push the analysis to an optimal result.
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where (†) follows from the Poisson equation of (r1, p1) and (‡) from standard norm bounds.
Coupled with model transformation and careful choices of stopping times, this technique provides
tight bounds for the variations of the gain, bias, diameter, reaching time and invariant measures.
The obtained bounds on the variations of gain for instance (see Lemma III.41 and Lemma III.45)
are much better than those obtained using algebraic approaches involving the Drazin inverse
with very little structural assumptions, going way beyond the scope of ergodic Markov reward
processes.

10.D.1 A multichain-friendly diameter notion for Markov chains

The diameter provided in the definition is below generalizes the well-known notion of diameter
in the communicating/recurrent setting. It is tuned to provide a simple bound on the span of
the bias function.

Definition III.8 (Diameter of a policy/Markov chain). Let p the kernel of a Markov chain with
recurrent components S1, . . . ,Sk. The (policy) diameter of p is given by:

D(p) := sup
(si)∈

∏

i Si

sup
s∈S

Ep
s [τ{s1,...,sk}]<∞. (III.117)

Lemma III.38 (Policy bias and diameter). Let (r, p) a Markov reward process and denote g, h its
gain and bias functions. Then sp(h)≤ 2 sp(r)D(p).

Proof. For (si) ∈
∏k

i=1Si a covering of the recurrent components, we denote τ≡ τ{s1,...,sk} for
short. We have Ep

s [τ] ≤ D(p) <∞ for all s ∈ S by construction. Because µh = 0 for every
invariant measure of p, we see that for all i = 1, . . . , k, there must be si ∈ Si such that h(si)≥ 0,
and another si ∈ Si such that h(si)≤ 0. Assume that h(si)≤ 0 for all i = 1, . . . , k. Then:

max(r − g)D(p)≥ Ep
s

�

τ−1
∑

t=1

(r(St)− g(St))

�

(†)
= Ep

s

�

τ−1
∑

t=1

�

eSt
− p(St)

�

h

�

= h(s)− Ep
s [h(Sτ)] = h(s)−

k
∑

i=1

Pp
s

�

τSi
<∞

�

h(si)
(‡)
≥ h(s).

(III.118)

where (†) follows from the Poisson equation g(s) + h(s) = r(s) + p(s)h and (‡) by h(si) ≤ 0.
With similar computations, and picking si such that h(si)≥ 0 for i = 1, . . . , k, we have:

min(r − g)D(p)≤ h(s)−
k
∑

i=1

Pp
s

�

τSi
<∞

�

h(si)≤ h(s). (III.119)

Combining (III.118) and (III.119), we obtain:

max(h)−min(h)≤ D(p)(max(r − g)−min(r − g))≤ 2 sp(r)D(p) (III.120)

where the second inequality uses that min(r)≤ g(s)≤max(r) for all s.

Lemma III.39 (Variations of policy diameter). Let p1 ∼ p2 two equivalent Markov chains with
(common) recurrent components S1, . . . ,Sk. For all (si) ∈

∏k
i=1Si covering of the recurrent

components, the variations of the hitting time τ≡ τ{s1,...,sk} are bounded as:
�

�

�

�

sup
s

Ep2
s [τ]− sup

s
Ep1

s [τ]

�

�

�

�

≤
1
2

sup
s

Ep2
s [τ] sup

s
Ep1

s [τ]∥p2 − p1∥1. (III.121)

In particular D(p2)≤ D(p1) +
1
2 D(p1)D(p2)∥p2 − p1∥1.
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Proof. Let (si) ∈
∏k

i=1Si a covering of the recurrent components and denote τ≡ τ{s1,...,sk} for
short. Consider the kernel p′j obtained by making every si absorbing and consider the reward
function r ′(s) := 1(s /∈ {s1, . . . , sk}). The gain and bias functions of the Markov reward process
(r ′, p′j) are denoted g ′j and h′j for j = 1, 2. Remark that g ′j = 0 and that the bias satisfies

h′j(s) = Clim
T→∞

E
p′j
s

�

τ∧T−1
∑

t=1

�

r ′(St)− g ′j(St)
�

�

= E
p j
s [τ] (III.122)

hence h′j are the reaching times of which we want to bound the variations. We have:

h′2(s) = Ep2
s

�

τ−1
∑

t=1

r ′(St)

�

= h′1(s) + Ep2
s

�

τ−1
∑

t=1

(p2(St)− p1(St))h
′
1

�

.

The error term is bounded by |Ep2
s [
∑τ−1

t=1 (p2(St)− p1(St))h′1]| ≤
1
2sp(h′1)E

p2
s [τ]∥p2 − p1∥1. By

(III.122), we clearly have sp(h′1) =max(h′1) = sups Ep1
s [τ]. Accordingly, we have obtained the

self-bound:
�

�

�

�

sup
s

Ep2
s [τ]− sup

s
Ep1

s [τ]

�

�

�

�

≤ 1
2 sup

s
Ep2

s [τ] sup
s

Ep1
s [τ]∥p2 − p1∥1. (III.123)

This concludes the proof.

The assumption p1 ∼ p2 is not always necessary and can be dropped under a recurrent
assumption.

Lemma III.40 (Variations of policy diameter, recurrent case). Let p1, p2 two recurrent Markov
chains. We have:

|D(p1)− D(p2)| ≤
1
2

D(p1)D(p2)∥p2 − p1∥1. (III.124)

Proof. Same proof as Lemma III.39.

The inequality D(p2)≤ D(p1) +
1
2 D(p1)D(p2)∥p2 − p1∥1 is a self-bound for D(p2). It can be

decoupled when ∥p2 − p1∥1 is small. If ∥p2 − p1∥1 <
2

D(p1)
, we obtain:

D(p2)≤
1

1− 1
2 D(p1)∥p2 − p1∥1

D(p1). (III.125)

For instance, if ∥p2 − p1∥1 ≤
1

D(p1)
, then D(p2)≤ 2D(p1).

10.D.2 Results for unichain Markov reward processes

The first lemma is a duplicate of Theorem II.1.

Lemma III.41 (Unichain gain variations). Let (r1, p1) and (r2, p2) two Markov reward processes.
Denote g j, h j the gain and bias functions of (r j, p j) for j = 1,2. Assume that sp(g1) = 0. Then:

∥g2 − g1∥∞ ≤ ∥r2 − r1∥∞ +
1
2sp(h1)∥p2 − p1∥1.

If in addition, p1 ∼ p2, then sp(h1) can be changed to sp(h1|S1
) where S1 is the collection of

recurrent states under p1.

Proof. This is direct adaptation of tutorial computation. Refer to the proof of Theorem II.1 for
details.
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Lemma III.42 (Unichain invariant measure variations). Let p1 ∼ p2 two Markov chains and
assume that p1 is unichain.5 Denote µ j the (unique) probability invariant measure under p j. We
have:

∥µ2 −µ1∥∞ ≤ min
j∈{1,2}

D(p j) ∥p2 − p1∥1.

Proof. Fix s0 ∈ S a recurrent state. Consider the reward function r(s) = 1(s = s0), and denote
g j, h j the gain and bias functions of the Markov reward process (r, h j). Remark that g j(s) = µ j(s0).
By Lemma III.38, we have sp(h j)≤ 2sp(r)D(p j)≤ 2D(p j). Continuing with Lemma III.41, we
have:

|µ2(s)−µ1(s)| ≤ D(p j)∥p2 − p1∥1

for both j = 1, 2. This concludes the proof.

Lemma III.43 (Unichain bias variations). Let (r1, p1) and (r2, p2) two Markov reward processes,
assume that p1 is unichain and that p1 ∼ p2. Denote g j and h j the gain and bias function of (r j, p j)
for j = 1, 2. We have:

∥h2 − h1∥∞ ≤ 4D(p2)∥r2 − r1∥∞ +
�

2D(p2)sp(h1) +
1
2sp(h1

1)
�

∥p2 − p1∥1

Proof. We start by bounding sp(h2 − h1). Fix s0 a recurrent state and consider the transform
p′j that makes s0 absorbing as well as the reward function r ′j(s) := 1(s ̸= s0)(r j(s) − g j(s)).
Denote g ′j and h′j the associated gain and bias functions. From direct computations, we see
that g ′j = 0 and that h′j(s) = h j(s)− h j(s0), so in particular h′j − h j ∈ Re so sp(h′j) = sp(h j) and
sp(h′2 − h′1) = sp(h2 − h1). Moreover, h′2 and h′1 are related as follows:

h′2(s) = E
p′2
s





τs0
−1

∑

t=1

r ′2(St)





≤ Ep2
s

�

τs0

�

r ′2 − r ′1




∞ + Ep2
s





τs0
−1

∑

t=1

�

eSt
− p1(St)

�

h′1





≤ h′1(s) + Ep2
s

�

τs0

��

∥r2 − r1∥∞ + ∥g2 − g1∥∞ +
1
2sp(h′1)



p′2 − p′1




1

�

≤ h′1(s) + Ep2
s

�

τs0

��

2∥r2 − r1∥∞ + sp(h1)


p′2 − p′1




1

�

where the last inequality is a consequence of Lemma III.41 and sp(h′1)≤ sp(h1). With the same
technique, we lower bound h′2(s) by h′1(s)with the same error term. Remark that E

p j
s [τs0

]≤ D(p j).
So:

sp(h2 − h1) = sp(h′2 − h′1) = (h
′
2 − h′1)(smax)− (h′2 − h′1)(smin)

≤ 2 D(p2)
�

2∥r2 − r1∥∞ + sp(h1)


p′2 − p′1




1

�

.
(III.126)

To transform the bound on the span to a bound on the norm, remark if u,v are two vectors
and q is a probability distribution, then ∥u− v∥∞ ≤ sp(u− v) + |q(u− v)|. Let µ j the (unique)
invariant probability measure under p j. We have

∥h2 − h1∥∞ ≤ sp(h2 − h1) + |µ2(h2 − h1)|. (III.127)

The left term of (III.127) is taken care of with (III.126) and we are left to bound |µ2(h2 − h1)|.
Remark that h1

j , the 1-th higher order bias, is the bias of the Markov reward process (−h j, p j).

5Hence p2 is equally unichain with the same recurrent class.
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We have:

|µ2(h2 − h1)|= |µ2h1|= lim
T→∞

1
T

�

�

�

�

�

Ep2
s

�

T−1
∑

t=1

h1(St)

�

�

�

�

�

�

= lim
T→∞

1
T

�

�

�

�

�

Ep2
s

�

T−1
∑

t=1

�

eSt
− p1(St)

�

h1
1

�

�

�

�

�

�

= lim
T→∞

1
T

�

�

�

�

�

Ep2
s

�

T−1
∑

t=1

(p2(St)− p1(St))h
1
1

�

�

�

�

�

�

≤ 1
2sp(h1

1)∥p2 − p1∥1.

(III.128)

Combining (III.126), (III.127) and (III.128), we obtain the desired bound.

10.D.3 Results for multichain Markov reward processes

We generalize the inequalities of the unichain setting to general multichain Markov processes.
The new difficulty is that in the multichain setting, a perturbation of the kernel changes the
probability of reaching a given recurrent component. The first result below is key. It is perhaps
surprising, because it shows that the reaching probabilities vary additively and not multiplica-
tively with respect to kernel modifications.

Definition III.9. We say that two Markov chains are equivalent and write p1 ∼ p2 if p1≪ p2≪ p1.

Lemma III.44 (Reaching probabilities variations). Let p1 ∼ p2 two equivalent Markov chains and
let S 1

1 , . . . ,S k
1 the recurrent classes of p1. Let τ∞ := inf{t ≥ 1 : St ∈ S 1

1 ∪ . . .∪S k
1 } the reaching

time to one of the recurrent classes and τi := inf{t ≥ 1 : St ∈ S i
1 } the reaching time to S i

1 . We
have:

�

�Pp1
s (τi <∞)− Pp2

s (τi <∞)
�

�≤ min
j∈{1,2}

1
2E

p j
s [τ∞] ∥p1 − p2∥1.

In case, the bound can be simplified using E
p j
s [τ∞]≤ D(p j).

Proof. Consider the reward function r(St , St+1) = 1(St /∈ S i
1 and St ∈ S i

1 ), providing reward
when the walk crosses the frontier between S i

1 and its S \S i
1 . For j ∈ {1, 2}, we denote g j, h j

the gain and bias functions under the Markov reward process (r, p j). Since p1 ∼ p2, they have
the same recurrent classes, we have Ep j[τi] <∞ for j = 1,2 and g j(s) = 0. Therefore, for
s /∈ S i

1 , we have:

h j(s) := lim
T→∞

E
p j
s [r(S1, S2) + . . .+ r(ST−1, ST )]

= lim
T→∞

E
p j
s

�

T−1
∑

t=1

1(St /∈ S i
1 and St+1 ∈ S i

1 )

�

= lim
T→∞

E
p j
s

�

T−1
∑

t=1

1(τi = t + 1)

�

= lim
T→∞

T−1
∑

t=1

P
p j
s (τi = t + 1) = P

p j
s (2≤ τi <∞) = P

p j
s (τi <∞)

where the last line use that s /∈ S i
1 . For s ∈ S i

1 , we have p j(s) = 0. Our goal is therefore to
bound h2(s) with respect to h1(s). For s /∈ S i

1 , we have:

h2(s) = lim
T→∞

Ep2
s

�

T−1
∑

t=1

r(St , St+1)

�
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(†)
= lim

T→∞
Ep2

s

�

T−1
∑

t=1

�

eSt
− p1(St)

�

h1

�

= h1(s) + lim
T→∞

Ep2
s

�

T−1
∑

t=1

(p2(St)− p1(St))h1

�

where (†) follows from Poisson’s equation. We are left to bound the RHS. Observe that once
St belongs to one of the recurrent components of p1, every state s′ that is reachable under p1
satisfies h1(s′) = 0. Because p1 ∼ p2, this is also true for any state that is reachable under p2.
Therefore:
�

�

�

�

�

lim
T→∞

Ep2
s

�

T−1
∑

t=1

(p2(St)− p1(St))h1

�

�

�

�

�

�

≤ 1
2Ep2

s [τ∞]sp(h1)∥p2 − p1∥1 ≤
1
2Ep2

s [τ∞] ∥p2 − p1∥1.

In other words, |p1(s)− p2(s)| ≤
1
2Ep2

s [τ∞]. Because j = 1 and j = 2 play a symmetric role,
Ep2

s [τ∞] can be changed to Ep1
s [τ∞].

Lemma III.45 (Multichain gain variations). Let p1 ∼ p2 two equivalent Markov chains and let
S1, . . . ,Sk the (common) recurrent classes. Let τ∞ := inf{t ≥ 1 : St ∈ S1 ∪ . . .∪Sk} the reaching
time to one of the recurrent classes. We have:

∥g2 − g1∥∞ ≤ ∥r2 − r1∥∞ + min
j∈{1,2}

1
2

�

max
i

sp(h j|Si
) + 1

2 kE
p j
s [τ∞]

�

∥p2 − p1∥1

In case, the bound can be simplified using 1
2(maxi sp(h j|Si

) + 1
2 kE

p j
s [τ∞])≤ (1+

1
4 k)D(p j).

Proof. Let s ∈ S . We have:

(∗) = |g2(s)− g1(s)|

≤
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�

�
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k
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Pp1
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≤
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Pp2
s (τi <∞)|g2(Si)− g1(Si)|+
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i=1

�

Pp2
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(†)
≤

j
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i=1

Pp2
s (τi <∞)

�

∥r2 − r1∥∞ +
1
2sp(h1|Si

)∥p2 − p1∥1

�

+ 1
2
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Pp2
s (τi <∞)− Pp1

s (τi <∞)
�k

i=1







1

(‡)
≤ ∥r2 − r1∥∞ +

1
2

�

max
i

sp(h1|Si
) + 1

2 kEp1
s [τ∞]

�

∥p2 − p1∥1

where (†) follows by applying Lemma III.41 to the LHS and (‡) by applying Lemma III.44 to the
RHS.

Lemma III.46 (Multichain invariant measure variations). Let p1 ∼ p2 two equivalent Markov
chains and let S1, . . . ,Sk the (common) recurrent classes. Let τ∞ := inf{t ≥ 1 : St ∈ S1∪ . . .∪Sk}
the reaching time to one of the recurrent classes. Denoteµ j(−|s) the asymptotic empirical distribution
of visits starting from s under p j. We have:

∀s ∈ S , ∥µ2(−|s)−µ1(−|s)∥∞ ≤ min
j∈{1,2}

1
2

�

max
i

D(p j|Si
) + 1

2 kE
p j
s [τ∞]

�

∥p2 − p1∥1.

In case, the bound can be simplified using 1
2(maxi D(p j|Si

) + 1
2 kE

p j
s [τ∞])≤ (1+

1
4 k)D(p j).

Proof. This is a consequence of Lemma III.45 by considering the reward function r(s) = 1(s = s∞)
for s∞ ∈ S a fixed state, similarly to Lemma III.42. Denote g j, h j denote the gain and bias
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function of the Markov reward process (r, p j). Remark that g j(s0) = µ j(s∞|s0). By Lemma III.45,
we have:

|µ2(s∞|s0)−µ1(s∞|s0)| ≤ min
j∈{1,2}

1
2

�

max
i

sp(h j|Si
) + 1

2 kE
p j
s0
[τ∞]

�

∥p2 − p1∥1.

Because Si is a recurrent class under p j, it corresponds to the optimal bias of a communicating
model, so by Lemma III.38, we have sp(h j|Si

) ≤ sp(r)D(p j|Si
) ≤ D(p j|Si

). This provides the
desired bound.

Lemma III.47 (Multichain bias variations). Let (r1, p1) and (r2, p2) two Markov reward processes
with p1 ∼ p2 and let S1, . . . ,Sk the (common) recurrent classes. Denote g j, h j the gain and bias
functions of (r j, p j) for j = 1, 2. Let τ∞ := inf{t ≥ 1 : St ∈ S1 ∪ . . .∪Sk} the reaching time to one
of the recurrent classes. We have

∥h2 − h1∥∞ ≤ 6D(p2)∥r2 − r1∥∞ +
��

7+ 1
2 k
�

D(p2)D(p1) + 2D(p1)
2
�

∥p2 − p∥1.

Following Lemma III.39, when ∥p2 − p1∥1 ≤
1

D(p1)
, the quantity D(p2) can be changed to 2D(p1).

The result can be improved by more carefully tracking the Lipschitz constants throughout.
To lighten the typography — and because our application do not require an optimal result, we
overshoot the error term.

Proof. For i = 1, . . . , k, pick si
0 ∈ Si and denote S0 = {s1

0, . . . , sk
0}. For j = 1,2, let p′j the kernel

obtained by copying p j while making every si
0 absorbing, and set r ′j(s) := 1(s /∈ S0)(r j(s)− g j(s)).

Denote g ′j and h′j the gain and bias functions of the Markov reward process (r ′j, p′j). Observe that
g ′j = 0 and h′j(s

i
0) = 0 for all i = 1, . . . , k. Moreover, the biases h j and h′j are linked as follows:

h′j(s) = Clim
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(III.129)

In particular, sp(h′j)≤ 2 sp(h j)≤ 4D(p j) by Lemma III.38. We have:
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≤ h′1(s) + D(p2)
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∥r2 − r1∥∞ + ∥g2 − g1∥∞ + 2D(p1)∥p2 − p1∥1
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(§)
≤ h′1(s) + D(p2)
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D(p1)∥p2 − p1∥1

�

.

where (†) follows from Poisson’s equation, (‡) bounds bias span and hitting times by diameter
and expands the definition of r ′j, and (§) invokes the (simplified version of) Lemma III.45 to
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bound ∥g2 − g1∥∞. With the same computations, we upper-bound h′2(s) relatively to h′1(s),
leading to the equation:

�

�h′2(s)− h′1(s)
�

�≤ D(p2)
�

2∥r2 − r1∥∞ +
�

3+ 1
4 k
�

D(p1)∥p2 − p1∥1

�

. (III.130)

Combining (III.129) and (III.130), we obtain:

(∗) = |h2(s)− h1(s)|

≤
�

�h′2(s)− h′1(s)
�

�+

�

�

�

�

�

k
∑

i=1

�

Pp2
s

�

τSi
<∞

�

h2(s
i
0)− Pp1

s

�

τSi
<∞

�

h1(s
i
0)
�

�

�

�

�

�

≤
�

�h′2(s)− h′1(s)
�

�+

�

�

�

�

�

k
∑

i=1

Pp2
s

�

τSi
<∞

��

h2(s
i
0)− h1(s

i
0)
�

�

�

�

�

�

+

�

�

�

�

�

k
∑

i=1

�

Pp2
s

�

τSi
<∞

�

− Pp1
s

�

τSi
<∞

��

h1(s
i
0)

�

�

�

�

�

(†)
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(‡)
≤ 6D(p2)∥r2 − r1∥∞ +

��

7+ 1
2 k
�

D(p2)D(p1) + 2D(p1)
2
�

∥p2 − p∥1

where (†) is obtained by bounding the first term with (III.130), the second term with Lemma III.43
and the third term with Lemma III.44; and (‡) follows from sp(h1

1) ≤ 4D(p1)2 by applying
Lemma III.38 twice.

10.D.4 Sensitivity of near optimal pairs and Bellman gaps

The gain gap ∆g is given by ∆g(M) := min{∥g∗(M) − gπ(M)∥∞ : π /∈ Π∗(M)}. The worst
diameter of a communicating Markov decision process M is the worst diameter of its stationary
deterministic policies (see Definition III.8), i.e.,

D∗(M) :=max
π∈Π

D(pπ)<∞ (III.131)

The worst diameter provides a simple description of the sensibility of Z ε∗∗ and ∆ε∗ to model
modifications.

Proposition III.48 (Sensitivity of Z ε∗∗). Let M ∈M and fix ε ∈ (0, 1
2∆g(M)). For all M ′ such

that:

∥M ′ −M∥∗ ≤
1
2ε

1+
�

1+ 1
4 |S |

�

D∗(M)
=:

ε

Cg(M)
, (III.132)

we have Z ε∗∗(M
′) =Z ∗∗(M) and Π∗ε(M

′) = Π∗(M).

Proof. Define C(M) := 1+(1+ 1
4 |S |)D∗(M). For every policyπ ∈ π, it follows from Lemma III.45

that:

∥gπ(M ′)− gπ(M)∥∞ ≤ ∥r ′π − rπ∥∞ +
�

1+ 1
4 |S |

�

D(pπ)∥p′π − pπ∥∗ ≤ C(M)∥M ′ −M∥∗.

For ε < 1
2∆g(M) and C(M)∥M ′ −M∥∗ ≤ 1

2ε, every policy satisfies:

∥gπ(M ′)− g∗(M ′)∥∞ ≤ ∥gπ(M ′)− gπ(M)∥∞ + ∥g∗(M ′)− g∗(M)∥∞ + ∥gπ(M)− g∗(M)∥∞
≤ ∥gπ(M)− g∗(M)∥∞ + ε.

Therefore, every optimal policy of M is ε-gain optimal in M ′, meaning that Z ε∗∗(M
′) ⊇ Z ∗∗(M).

Also, with similar computations, we find ∥gπ(M ′)− g∗(M ′)∥∞ ≥ ∥gπ(M)− g∗(M)∥∞ − ε. So
every ε-gain optimal policy of M ′ is 2ε-gain optimal in M , and since 2ε < ∆g(M), 2ε-gain
optimal policies are gain optimal in M . So Z ε∗∗(M

′) ⊆ Z ∗∗(M).
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Proposition III.49 (Sensitivity of ∆ε∗). Let M ∈ M and fix ε ∈ (0, 1
2∆g(M)). If Cg(M)∥M ′ −

M∥∗ < ε, then:

∥hε∗(M
′)− h∗(M)∥∞ ≤ (18+ |S |)D∗(M)2∥M ′ −M∥∗ =: Ch(M)∥M ′ −M∥∗; (III.133)

∥∆ε∗(M
′)−∆∗(M)∥∞ ≤ (1+ 2D∗(M) + 2Cg(M) + 2Ch(M))∥M ′ −M∥. (III.134)

More simply, hε∗ and ∆ε∗ are locally O(D∗(M)2)-Lipschitz for ∥−∥∗.

Proof. Since Cg(M)∥M ′ −M∥∗ < 1, unfolding the definition of Cg(M) (Proposition III.48) we
see that D(p′π)≤ 2D(pπ) for every policy, see (III.125) and Lemma III.39. By Lemma III.47, for
every policy π′ we have:



hπ(M
′)− hπ(M)





∞ ≤ 12D(pπ)∥r ′π − rπ∥∞ + (18+ |S |)D(pπ)2∥p′π − pπ∥∗1
≤ (18+ |S |)D∗(M)2∥M ′ −M∥∗.

(III.135)

Introduce Ch(M) := (18+ |S |)D∗(M)2. By Proposition III.48, we know that since Cg(M)∥M ′ −
M∥∗ ≤ ε, Π∗ε(M

′) = Π∗(M). Pick π ∈ Π∗ε(M
′). Using (III.135), we find that, for all s ∈ S ,

hπ(s, M ′)≤ hπ(s, M) + Ch(M)∥M ′ −M∥∗ ≤ h∗(s, M) + Ch(M)∥M ′ −M∥∗

where the second inequality uses that π is gain-optimal in M . So hε∗(s, M ′) ≤ h∗(s, M) +
Ch(M)∥M ′−M∥∗. Moreover, by picking π has a bias-optimal policy of M , we see that π ∈ Π∗ε(M

′)
and invoking (III.135), we obtain hε∗(s, M ′)≥ h∗(s, M)− Ch(M)∥M ′ −M∥∗. Accordingly,



hε∗(M
′)− h∗(M)





∞ ≤ Ch(M)∥M ′ −M∥∗. (III.136)

Therefore,

(∗) = ∥∆ε∗(s, a, M ′)−∆∗(s, a, M)∥∞
≤ ∥g∗(M ′)− g∗(M)∥∞ + ∥hε∗(M

′)− h∗(M)∥∞ + ∥r ′ − r∥∞ + ∥p′(s, a)hε∗(M
′)− p(s, a)h∗(M)∥∞

≤ ∥g∗(M ′)− g∗(M)∥∞ + 2∥hε∗(M
′)− h∗(M)∥∞ + ∥r ′ − r∥∞ + sp(h∗(M))∥p′ − p∥1

≤ (1+ sp(h∗(M)) + 2Cg(M) + 2Ch(M))∥M ′ −M∥∗.

Conclude by bounding sp(h∗(M)) by 2D∗(M).
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Part IV

Local Regret Considerations

In this last part, we focus on the local behavior of algorithms. It starts in Chapter 11 with the
observation that optimistic methods, such as UCRL2 Auer et al. (2009), tend to play sub-optimal
actions for arbitrarily long periods of time infinitely often. These bad periods of play are tracked
with exploration times, leading to the design of a new learning metric that called the regret
of exploration, and show that existing optimistic algorithms have linear regret of exploration,
which is the worst possible. In Chapter 12, we address the poor regret of exploration guarantees
of optimistic methods by revising how episodes are managed in the first place. We suggest the
performance test (PT) to reduce the duration of episodes of sub-optimal play. This solution
is simplified in Chapter 13 to the vanishing multiplicative condition (VM) and we discuss
the ideas behind the proof, that are related to the local behavior of confidence region in the
asymptotic regime of algorithms. Chapter 14 goes further, by investigating to which extend
the management of episodes can be improved. To this end, Chapter 14 focuses on stochastic
bandits where episodes are unnecessary and shows that optimistic methods, such as UCB Auer
(2002), have infinitely many bursts of suboptimal play despite being episode-less. This property
is generalized to a broader class of index algorithms and it is shown that this behavior can only
be avoided with a form of randomization. This all is studied using the sliding regret, a new
learning metric which is finer than the regret of exploration.

This part is a combination of three papers.

Boone, V. and Gaujal, B. (2023b). The Regret of Exploration and the Control of
Bad Episodes in Reinforcement Learning. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J., editors, Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 2824–2856. PMLR

Boone, V. and Gaujal, B. (2024+). Local regret guarantees in average reward
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Chapter 11

Exploration Episodes and the
Regret of Exploration

The story begins right where Part II stopped. In Part II, EVI based algorithms where introduced
as a robust solution to average reward Markov decision processes. Such algorithms periodically
compute an optimistic policy out of a confidence region that they deploy until it becomes
obsolete. Because algorithms are supposed to be run, let us run the most classical one: UCRL2
from Auer et al. (2009).

0 25000 50000 75000 100000 125000 150000 175000 200000
0

500

1000

1500

2000
UCRL2

0 25000 50000 75000 100000 125000 150000 175000 200000
0

500

1000

1500

2000
UCRL2

Figure 11.0.1: (On the left) The first order regret of UCRL2 Auer et al. (2009) on a random
10 state 2 action model, one run. (On the right) The same run, with highlighted periods of
sub-optimal play.

The run is pictured on Figure 11.0.1 and is typical of UCRL2; We observe a first phase where
the first order regret grows linearly and a second phase where the algorithm periodically alter-
nates between periods of optimal play (where the regret is constant) and periods of suboptimal
play (where the regret grows). Rather remarkably, even on the simplest model (a two-armed
bandit), the periods of sub-optimal play of UCRL2 are increasingly large. In practice, UCRL2
eventually plays sub-optimal actions for arbitrary long period of time. As we will discuss shortly,
this behavior is built in by the way episodes are managed.

In this part and the next Chapters 12 and 13, we patch this behavior.
Some will genuinely ask why this behavior should be patched in the first place; Especially

if the regret guarantees are already satisfying. The answer is twofold. First, most theoretical
guarantees are in strong probability or in expectation when, in many practical scenarios, al-
gorithms are only run once. For consistency purposes, sub-optimal actions must be explored
infinitely often yet with UCRL2, this exploration is not sporadically spread during play, but rather
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concentrates in burst of suboptimal play that grow uncontrollably. Any service that is run using
UCRL2 will display infinitely many periods of time when the quality of service drastically drops
that, if rarer and rarer, take longer and longer.1 Second, this question happens to be fruitful.
It leads to the analysis of the almost-sure regimes of optimistic algorithms and to the local
behavior time-wise behaviors of their confidence regions.

Overall, while Part II was focusing on the way the optimistic policy was computed and on
the right choice of confidence region, the present chapter focuses on the episode rule, that
decides when the policy should be changed. In most of the literature derived from UCRL2 Auer
et al. (2009), episodes are updated using the doubling trick (DT):

tk+1 = inf
�

t > tk : ∃a ∈A (St), Nt(St , a)≥ 1∨ 2Ntk
(St , a)

	

. (DT)

In view of (DT), the observations of Figure 11.0.1 appear obvious. By design, the episodes of
an algorithm using (DT) are increasingly large. So if the algorithm uses sub-optimal policies
infinitely often, these “bad” periods of time grow in size. First, in Section 11.1, we address the
increasingly burdensome lack of formalism concerning these “bad periods” and introduce the
notion of exploration times. Then, in Section 11.3, we introduce a new learning metric that
measures the worst regret at exploration times, the regret of exploration. Under this formalism,
we show that UCRL2 and its variants (Part II) have a linear regret of exploration, then suggest
ways to fix the issue by providing alternatives to the doubling trick (DT).

11.1 Exploration episodes and regret of exploration

Because we are now interested in how the regret scales locally, we overload the regret and first
order regret notations by taking the initial time into account:

Reg(τ,τ′) := (τ′ −τ)g∗ −
τ′−1
∑

t=τ

Rt and FOReg(τ,τ′) :=
τ′−1
∑

t=τ

∆∗(Zt) (IV.1)

where τ,τ′ are stopping times of the natural filtration satisfying τ≤ τ′. In the whole Part IV,
we focus on the study of episodic algorithms, generalizing the architecture of Algorithm II.1,
see Algorithm IV.1. Such algorithms periodically update a policy πk that they play for a period
of time {tk, . . . , tk+1 − 1} determined by some episode rule.

Algorithm IV.1 The architecture of episodic algorithms

1: k← 0, initialize π0;
2: for t = 0,1, . . . do
3: if current policy πk is obsolete then
4: Update policy πk;
5: k← k+ 1;
6: tk← t;
7: end if
8: πt ← πk;
9: Iterate πt , i.e., play At ∼ πt(−|St), observe reward Rt and transition St+1;

10: end for

Regarding Figure 11.0.1, one attempt to measure the regret endured when the algorithm
explores is to measure the regret starting from episodes when the algorithm drops an optimal

1Some will ask which services are run with UCRL2. I am not aware of any.
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policy for a sub-optimal one, i.e., at times

�

tk : πk−1 ∈ Π∗(M) and πk /∈ Π∗(M)
	

. (IV.2)

While (IV.2) captures the intention, it is not mathematically convenient and lacks many intuitive
properties that one wishes it would have. The main concern is that it fails to capture the idea of
exploration, and the main reason is that deployed policies can be partially optimal and multi-
chain. For instance, the algorithm may drop a globally gain optimal policy for a sub-optimal
policy π that is actually gain optimal from the current state, i.e., g∗(St ; M) = gπ(St ; M) but
gπ(M)< g∗(M). The converse can also happen, as we want to track what happens when the
algorithm drops a policy that was optimal from the current state (but no necessarily globally)
for a policy that is sub-optimal from the current state. For these reasons, the final definition of
exploration times (Definition IV.1) is slightly more complex than (IV.2).

Definition IV.1 (Exploration). An episode k is an exploration episode (and tk is an
exploration time) if the two conditions below are satisfied:

(1) g∗(M) = gπ
k−1
(Stk

; M), i.e., the previously deployed policy was optimal from the
current state;

(2) There is z ∈ Reach(πk, Stk
) \ Z ∗(M), i.e., there exists a sub-optimal pair that is

reachable from the current state under the current policy.

The set of exploration episodes is denoted Kexp.

Remark that when the underlying model is recurrent, the exploration times given by Defini-
tion IV.1 are equivalent to those defined using (IV.2).

We will commonly pick an enumeration tk(i) ofKexp where k(i) denotes the i-the exploration
episode and tk(i) is the associated i-th initial exploration time. Formally, tk(1) := infKexp
and tk(i+1) := inf{tk > tk(i) : k ∈ Kexp}. We then define the regret of exploration as the
asymptotically worst regret at exploration times.

Definition IV.2 (Regret of exploration). Let (tk(i)) the enumeration of exploration episodes.
The regret of exploration is given by:

RegExp(T )≡ RegExp(T ; M) := lim sup
i→∞

EM
�

Reg(tk(i); tk(i) + T )
�

. (IV.3)

The regret of exploration is well-defined only if there are infinitely many exploration times
tk(i), and this is not always guaranteed. There actually exist models where exploration is
somehow unnecessary, making them conceptually easier to learn than bandits. As a matter
of fact, these models are precisely those such that the regret lower bound (Part III) satisfies
K(M ;M ) = 0. Such models are discussed in Section 11.2. When K(M ;M ) = 0, there is
no guarantee that the number of exploration episodes is infinite in general. The regret of
exploration may be ill-behaved when episodes are too short, because the performance observed
during a short episode may be decorrelated from the actual performance of the deployed policy.
In Chapter 12, we explain why optimistic algorithms cannot afford too many episodes. So,
such cases will be cast out by assuming that there are sub-linearly many episodes, i.e., that
|K (T )|= o(T ).
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11.2 Explorative Markov decision processes

When the enumeration of exploration episodes (tk(i)) is almost surely finite, the regret of
exploration is the limsup of a finite sequence of non-negative quantities, which is arguably zero.
When this is the case, the regret of exploration is not an interesting metric. In this section, we
look at when this can be the case.

11.2.1 A Markov decision process where UCRL2 has constant regret

There exist models that can be learned within a finite exploration phase. This is the case when
the model dependent regret lower bound satisfies K(M ;M ) = 0, for which Theorem III.14
essentially guarantees that regret rates of o(log(T)) can be achieved. For such models, the
sub-optimality of sub-optimal actions can be checked only by visiting optimal pairs Z ∗∗(M). In
fact, for such models, we can find consistent learners achieving regret O(1). Such learners are
specifically designed optimistic algorithms with finitely many exploration episodes. To the best
of our knowledge, there is no mention of such cases in the literature.

We discuss the example displayed in Figure 11.2.1.

∗

0.1$

0.9$

0.9$

0.9$

0.9$

0.95$

0.8$

Figure 11.2.1: An example of model where Cnf(M) =∅ and where the regret of exploration
may be null. There is a single choice of action in all states except at the marked state (∗)
where there are two actions (dashed and solid lines). Under any state, a choice of action
deterministically leads to the state indicated by the arrow. Rewards are Bernoulli, with means
indicated by labels.

ConsiderM the class of models induced by M of Figure 11.2.1 by allowing for different
reward parameters (still Bernoulli) and with the same transition kernel. We consider running
UCRL2 Auer et al. (2009) on M ≡ (r, p,Z ) while giving it the transition kernel p as prior
knowledge — making the algorithm very similar to the UCYCLE algorithm of Ortner (2010)).
While it is known that UCRL2 has O(log(T)) regret in general, it is O(1) on the model of
Figure 11.2.1.

Proposition IV.1. If UCRL2 is given the transition kernel of the model M of Figure 11.2.1,
it achieves O(1) expected regret.

The idea of the proof is actually simple. On M , there are two possible policies, either looping
on the 5-cycle or the 3-cycle. But by looping on the 5-cycle, the algorithm learns its rewards
very well, hence can claim that the 3-cycle’s average reward is upper bounded by 1+1+0.1+ϵt

3
because unknown rewards are bounded by 1. This is smaller than a lower bound for the 5-cycle
0.9+0.9+0.9+0.9+0.1−ϵt

5 (where ϵt is vanishing with t). Therefore, the algorithm has no need to visit
the dashed arrows infinitely often. Interestingly, this example is robust to reward perturbations,
meaning that it is non-degenerate in a sense that we make precise below (Definition IV.3).

We consider the version of UCRL2 adapted to models with deterministic (known) transi-
tions and Bernoulli (unknown) rewards, so that the confidence region Mt on the model is
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identified to the confidence region Rt on reward parameters (the parameters of the Bernoulli
distributions). The algorithm given below relies on Hoeffding-type confidence bounds on re-
wards. The call EVI(R ,ε) returns a policy achieving ε-optimal gain on R , see Algorithm II.3.
We write gπ(s;R) := supM̃∈R gπ(s; M̃) and g∗(s;R) := supπ gπ(s;R) the optimistic gain (see
Definition II.2).

Proof of Proposition IV.1. The fact that UCRL2 is consistent on M is a well-known result. Indeed,
it is known that its regret is O(

p

SAT log(T )), see Auer et al. (2009) and Ortner (2010). We
focus on proving that it has bounded regret on the model M given in Figure 11.2.1. We will
work with a labeled version of Figure 11.2.2, see Figure 11.2.2.
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5π∗ π−∗
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Algorithm IV.2 UCYCLE: UCRL2 for determin-
istic transition models

Rt :=
∏

z∈Z

§

r̃(z) ∈ [0, 1] : r̃(z)≤ r̂t(z) +
r

2 log(SAt)
Nt (z)

ª

1: k← 0, initialize π0;
2: for t = 0, 1, . . . do
3: if (DT) triggers then
4: uk← EVI(Rt ,εt , 0S );
5: πk← any π s.t. Lt(uk) =L π

t (u
k);

6: k← k+ 1; tk← t.
7: end if
8: Set πt ← πk and iterate πt .
9: end for

Figure 11.2.2: A Markov decision process on which a version UCRL2 specialized to deterministic
transition models (known as UCYCLE, see Ortner (2010)) has bounded regret.

The model M is accordingly identified with its reward vector r. Remark that the only pair
with positive Bellman gap is (1, †) with Bellman gap ∆∗(1, †) ≤ 1. The regret is therefore
upper-bounded by |{t ≤ T : πt = π−}| and we are left to control the number of times the sub-
optimal policy π− is being played. A simple property induced by the doubling trick (DT) is that
tk+1 ≤ 3tk. Hence, if πt = π−, then there exists t ′ ∈ [1

3 t, t] such that π− is the result of EVI,
i.e., gπ

−
(Rt ′)> gπ

∗
(Rt ′) +

1
t ′ .

Let c := 3 · 0.9+0.9+0.9+0.9+0.1
5 −2 = 0.22, which is the threshold on the reward that one should

have on (0,∗) in order to make π− better than π∗. Since

gπ
−
(Rt)≤

1
3

�

2+ r̂t(0,∗) +
√

√2 log(SAt)
Nt(0,∗)

�

and gπ
∗
(Rt)≥ 1(r ∈ Rt)g

π∗(r),

we have:

(∗) := E
��

�t ≥ 1 : πt ̸= π−
�

�

�

≤ 300+
∑

t≥300

t
∑

t ′=t/3

P
�

gπ
−
(Rt ′)> gπ

∗
(Rt ′) +

1
100

�

≤ 300+
∑

t≥300

t
∑

t ′=t/3

�

P

�

r̂t ′(0,∗) +
√

√2 log(SAt ′)
Nt ′(0,∗)

> 0.21

�

+ P
�

r /∈ R(t ′)
�

�

. (IV.4)
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For the first term, remark that Nt ′(0,∗)≥ 1
5 t ′ almost surely when t ′ ≥ 5. For t ′ large enough so

that
p

10 log(SAt ′)/t ′ < 0.01, we have

(∗∗) := P

�

r̂t ′(0,∗) +
√

√2 log(SAt ′)
Nt ′(0,∗)

> 0.21

�

≤ P
�

∃n ∈ [1
5 t ′, t ′] : Nt ′(0,∗) = n, r̂t ′(0,∗) +

r

2 log(SAt ′)
n > 0.21

�

≤
∞
∑

n= 1
5 t ′

P(Nt ′(0,∗) = n, r̂t ′(0,∗)− r(0,∗)> 0.2)

≤
∞
∑

n= 1
5 t ′

exp
�

−
8

10000
n
�

=
exp

�

− 1
6250 t ′

�

1− exp
�

− 1
1250

� = O
�

exp(− 1
6250 t ′)

�

.

For the second term, we have

P
�

r /∈ R(t ′)
�

= P

�

∃z, |r̂t ′(z)− rz|>
√

√2 log(SAt ′)
Nt ′(z)

�

≤
∑

z

∞
∑

n=1

P

�

Nt ′(z) = n, |r̂t ′(z)− r(z)|>

√

√2 log(SAt ′)
n

�

≤ 2SA
∞
∑

n=1

exp
�

−4 log(SAt ′) · n
�

≤
2SA
(t ′SA)4

·
1

1− (t ′SA)−4
≤

4
(SA)3 t ′4

= O
�

t ′−4
�

.

Overall, injecting it all in (IV.4), we obtain E|t ≥ 1 : πt ̸= π−|<∞. Accordingly, E[Reg(T )] =
O(1) on M .

11.2.2 Explorative sub-spaces and exploration times

Proposition IV.1 suggests that given a classM of models, there may be consistent algorithms
such that EM[Reg(T)] = O(1) over large sub-spaces ofM . Such algorithms use sub-optimal
policies finitely often, hence Kexp is almost surely finite and there are finitely many exploration
episodes. This motivates the following definitions.

Definition IV.3 (Non degeneracy). A model M ≡ (r, p) is said non-degenerate if there
exists ε > 0 such that, for all r ′ ∈ RZ with ∥r ′ − r∥∞ < ε, the model M ′ ≡ (r ′, p) satisfies
Z ∗(M ′) =Z ∗(M). In other words, if Z ∗ is locally robust to reward perturbations at M.

Definition IV.4 (Explorative models). Given a space of Markov decision processesM , its
explorative sub-spaceM+ is the set of non-degenerate models M ∈ M such that every
algorithm (1) with sublinearly many episodes and (2) which is consistent onM , has infinitely
many exploration episodes almost surely.

Non degeneracy goes back to Boone and Gaujal (2023a) and corresponds to models for which
bias optimality can be correctly identified with arbitrary level of confidence. Theorem IV.2 below
provides a complete characterization of exploration sub-spaces, linking them to the confusing
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set. The main take-away from this result is that the regret of exploration is interesting to study
whenever there is something to learn that cannot be learned with bounded regret.

Theorem IV.2. Provided that M is non-degenerate, the following are assertions are equivalent.

(1) M /∈M+;
(2) Cnf(M ;M+) =∅;
(3) K(M ;M ) = 0.

The equivalence between (2) and (3) follows by definition of the K(M), see Theorem III.5.
What we are interested in is (1)⇒ (2) or, equivalently, the converse (2)c ⇒ (1)c, namely that if
the set of confusing model is non empty, then every consistent algorithm with sublinearly many
episodes has infinitely many exploration episodes. The result is established under a technical
assumption that is hard-coded in the definition of explorative sub-spaces, stating that there are
sub-linearly many episodes. This condition is arguably mild, because most of state-of-the-art
algorithms are made so that the number episodes grows sub-linearly (in fact polylogarithmically,
if possible). The inverse implication (2) ⇒ (1) is of second order importance and won’t be
shown in these pages, see Boone and Gaujal (2024) for a proof.

Proposition IV.3. Let M ∈M a non-degenerate model with Cnf(M) ̸=∅. Every episodic algorithm
which is (1) consistent and (2) with sub-linearly many episodes (in expectation) has infinitely many
exploration episodes with probability one.

This result is surprisingly difficult because of its generality. Recall that k ≥ 1 is an ex-
ploration episode if (1) g∗(M) = g(πk, Stk

, M) and (2) Reach(πk, Stk
, M)∩Z−(M) ̸= ∅, see

(Definition IV.1). In order to show that there are infinitely many exploration episodes, we have
to show that the learning process alternates infinitely often between periods of times when the
played policy is gain optimal, and others when there is a reachable sub-optimal pair. (STEP 1) is
a preliminary technical fact. In (STEP 2), we show with (IV.8) that the process spends infinitely
many times on the recurrent part of a gain-optimal policy. In (STEP 2), we show with (IV.9)
that the process must play sub-optimal pairs infinitely often. Combining both in (STEP 4), we
show that the number of exploration times is infinite, and each are finite with probability one.

Notation. If π ∈ Π, we write Rec(π) the set of states that are recurrent under π on M .

(STEP 1) For all model M ∈M , there exists a constant C(M)> 0 such that whatever the driving
mechanism, we have:

EM

�

T
∑

t=1

(g∗(St , M)− gπt (St , M) + 1(St /∈ Rec(πt)))

�

≤ EM[Reg(T )]+C(M)EM[|K (T )|]. (IV.5)

Proof. In the proof below, we drop the dependency in M in the notations. If π ∈ Π, we denote
Rec(π) the recurrent states of π in M . We have:

(∗) = E[Reg(T )]

= E

�

T
∑

t=1

∆∗(Zt)

�

(†)
= E

�

T
∑

t=1

�

g∗(St)− r(Zt) +
�

eSt
− p(Zt)

�

h∗
�

�
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≥ E

�

T
∑

t=1

(g∗ − r(Zt))

�

− sp(h∗)

(‡)
≥ E

�|K (T )|
∑

k=1

tk+1−1
∑

t=tk

1(St ∈ Rec(πt))(g
∗(St)− r(Zt))

�

︸ ︷︷ ︸

A

−E

�|K (T )|
∑

k=1

tk+1−1
∑

t=tk

1(St /∈ Rec(πt))

�

︸ ︷︷ ︸

B

−sp(h∗)

where (†) uses the Bellman equation h∗(s) + g∗(s) = r(s, a) + p(s, a)h∗ +∆∗(s, a), and (‡) uses
that g∗(St)− r(Zt)≥ −1. We bound A and B separately. Let D∗ := supπ sups Eπs [inf{t ≥ 1 : St ∈
Rec(π)}]<∞ the worst hitting time to a recurrent class in M . We have:

B= E

�|K (T )|
∑

k=1

tk+1−1
∑

t=tk

inf
�

t > tk : St ∈ Rec(πk)
	

�

≤ D∗E[|K (T )|]. (IV.6)

Meanwhile, introduce t ′k := tk+1 ∧ inf{t > tk : St ∈ Rec(πk)} and H := supπ sp(hπ) <∞ the
worst bias span. We have:

A= E





|K (T )|
∑

k=1

tk+1−1
∑

t=t ′k

(g∗(St)− r(Zt))





(†)
= E





|K (T )|
∑

k=1

tk+1−1
∑

t=t ′k

�

g∗(St)− gπ
k
(St) +

�

p(Zt)− eSt

�

hπ
k
�





≥ E





|K (T )|
∑

k=1

tk+1−1
∑

t=t ′k

(g∗(St)− gπt (St))



−HE[|K (T )|]

(‡)
≥ E

�

T
∑

t=1

(g∗(St)− gπt (St))

�

−HE[|K (T )|] (IV.7)

where (†) uses the Poisson equation hπ
k
(s) + gπ

k
(s) = r(s,πk(s)) + p(s,πk(s))hπ

k
and (‡) that

g∗(St)≥ gπt (St) for all t ≥ 1. Combining (IV.6) and (IV.7), we get:

E

�

T
∑

t=1

(g∗(St)− gπt (St))

�

+ E

�

T
∑

t=1

1(St /∈ Rec(πt))

�

≤ Reg(T ) + (2D∗ +H)E[|K (T )|].

Conclude the proof by setting C := 2D∗ +H <∞.

(STEP 2) Assume that the algorithm is consistent and has sublinearly many episodes in expectation.
Then:

P(∀T,∃t ≥ T : g∗(St , M) = gπt (St , M) and St ∈ Rec(πt)) = 1. (IV.8)

Proof. Assume on the contrary that P(∀T,∃t ≥ T : g∗(St , M) = gπt (St , M)∧St ∈ Rec(πt)) = 1−δ
with δ > 0. Accordingly, there exists T0 ≥ 1 such that:

P
�

∀t ≥ T0, g∗St
(M)> gπt (St , M) or St /∈ Rec(πt)

�

≥ 1
2δ.

Let ∆g :=min{g∗(s, M)− gπ(s, M) : π ∈ Π, s ∈ S , g∗(s, M)> gπ(s, M)} the gain-gap of M . We
have ∆g ∈ (0,1] and thus:

(∗) := E

�

T
∑

t=1

(g∗(St , M)− gπt (St , M))

�

+ E

�

T
∑

t=1

1(St /∈ Rec(πt))

�
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≥∆gE

�

T
∑

t=1

1(g∗(St , M)> gπt (St , M) or St /∈ Rec(πt))

�

≥∆g(T − T0)P(∀t ≥ T0, g∗(St , M)> gπt (St , M) or St /∈ Rec(πt))

≥ 1
2∆gδ(T − T0) = Ω(T ).

Meanwhile, we know that E[Reg(T )] = o(T ) and E[|K (T )|] = o(T ), so that by (STEP 1) (IV.5),
we also have (∗) = o(T ), a contradiction.

(STEP 3) If Cnf(M) ̸=∅, then every consistent algorithm satisfies

PM(∀T,∃t > T :∆∗(Zt)> 0) = 1. (IV.9)

Proof. On the contrary, assume that PM(∀T,∃t > T :∆∗(Zt)> 0) = 1−δ with δ > 0. Accord-
ingly, there exists m≥ 1 such that:

1
2δ ≤ PM(∀t > m :∆∗(Zt) = 0)≤ PM

 

∀t ≥ 1 :
∑

z∈Z−(M)

Nt(z)≤ m

!

. (IV.10)

We show that z ∈ Z−(M) can be changed to z /∈ Z ∗∗(M) in (IV.10), see (IV.11). To see this,
introduce the reward function f (z) := 1(z ∈ Z ∗∗(M)) and let g f , h f and ∆ f the respective
gain, bias and gap functions of the optimal policy π∗ of M (defined by π∗(s) = a the unique
a ∈ A (s) such that (s, a) ∈ Z ∗(M)) under reward function f and kernel p(M). Remark that
g f (s) = 1 for all s ∈ S and that, by construction of π∗, ∆ f (z) = 0 for all z ∈ Z ∗(M). Denote
H f := sp

�

h f
�

∨maxz

�

�∆ f (z)
�

�. We have:

∑

z∈Z ∗∗(M)

Nz(T ) =
T
∑

t=1

f (Zt)

(†)
=

T
∑

t=1

�

1+
�

eSt
− p(Zt)

�

h f −∆ f (Zt)
�

≥ T −H f −
T
∑

t=1

∆ f (Zt) +
T
∑

t=1

�

eSt+1
− p(Zt)

�

h f

(‡)
≥ T −H f −H f

T
∑

t=1

1(Zt /∈ Z ∗(M)) +
T
∑

t=1

1(Zt /∈ Z ∗∗(M))
�

eSt+1
− p(Zt)

�

h f

where (†) uses the Bellman equation 1+ h f (s) = f (s, a) + p f (s, a)h f +∆ f (s, a), and (‡) that
h f (s) = 0 for all (s,π∗(s)) ∈ Z ∗∗(M). For Z ′ ⊆ Z , denote NT (Z ′) :=

∑

z∈Z ′ NT (z). The first
sum is equal to

∑T
t=1 1(Zt /∈ Z ∗(M)) = NT (Z−(M)). The RHS of the above equation is bounded

using a time-uniform Azuma-Hoeffding inequality (Lemma I.22), showing that:

P

�

∃T ≥ 1,
T
∑

t=1

1(Zt /∈ Z ∗∗(M))
�

eSt+1
− p(Zt)

�

h f < −H f
È

NT (Z ∗∗(M)c) log
�

4NZ∗∗(M)c (T )
δ

�

�

≤ 1
4δ

Using that NT (Z ∗∗(M)c) = T −NT (Z ∗∗(M)), we obtain that, with probability at least 1
4δ, for all

T ≥ 1, we have:

T − NT (Z ∗∗(M)c)≥ T −H f
�

1+ NT (Z−(M))
�

−H f
r

NT (Z ∗∗(M)c) log
�

4NT (Z ∗∗(M)c)
δ

�

≥ T −H f (1+m)−H f
r

NT (Z ∗∗(M)c) log
�

4NT (Z ∗∗(M)c)
δ

�

.
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Rearranging terms, we get that with probability at least 1
4δ, for all T ≥ 1, we have:

NT (Z ∗∗(M)c)≤ H f
�

1+m+
Æ

NT (Z ∗∗(M)c) log(NT (Z ∗∗(M)c)) +
Ç

NT (Z ∗∗(M)c) log
�

4
δ

�

�

.

Denoting n := NT (Z ∗∗(M)), we have an equation of the form n ≤ α + β
p

n log(n) + γ
p

n.
For n ≥ 3, n log(n) ≥ n hence we can simplify the upper-bound to n ≤ α+ (β + γ)

p

n log(n).
Dividing by log(n) ≥ 1 and setting m := n/ log(n), we get m ≤ α+ (β + γ)

p
m, and simple

algebra leads to:
n

log(n)
= m≤ 2

�

α+ (β + γ)2
�

.

Further using log(n)≤
p

n, we get n≤ 4(α+(β+γ)2)2. We conclude that there exists a constant
m′ such that:

PM

 

∀t ≥ 1,
∑

z /∈Z ∗∗(M)

Nt(z)≤ m′
!

≥ 1
4δ. (IV.11)

Now that (IV.11) is established, we finally derive a contradiction by relying on a change of mea-
sure argument. Let M† ∈ Cnf(M), which is non-empty by assumption. For short, the transition
kernels and reward distributions of M (respectively M†) are denoted p and r (respectively p† and
r†). We introduce the log-likelihood-ratio of observations Ht := (St , At , R1, . . . , At−1, Rt−1, St) as:

L(t)≡ L(Ht) :=
∑

s,a

∑

i<t−1

1(Si = s, At = a) log

�

qs,a(Ri)

q†
s,a(Ri)

ps,a(Si+1)

p†
s,a(Si+1)

�

.

It is known since Marjani et al. (2021) that if E is a σ(Ht)-measurable event, then PM†
(E ) =

EM[1(E )exp(−L(t))]. Since M ≪ M†, there exists a constant c > 0 such that, for all z ∈ Z , we
have log[(rz(α)/r†

z (α)) · (pz(s′)/p†
z(s
′))]≤ log(c) with the convention 0/0 = 0. For z ∈ Z ∗∗(M),

the LHS logarithm is null. Therefore, we have:

PM†

 

∑

z /∈Z ∗∗(M)

Nt(z)≤ m′
!

= EM



1(
∑

z /∈Z ∗∗(M)

Nt(z)≤ m′)exp(−L(t))





≥ EM



1(
∑

z /∈Z ∗∗(M)

Nt(z)≤ m′)exp

 

−
∑

z /∈Z ∗∗(M)

Nt(z) log(c)

!





≥ c−m′PM

 

∑

z /∈Z ∗∗(M)

Nt(z)≤ m′
!

≥ c−m′δ := δ′ > 0.

Accordingly, the algorithm has probability at least δ′ to spend at most m′ visits outside Z ∗∗(M)
when running on M†. This will be in contradiction M† ∈ Cnf(M) and the consistency of the
algorithm. Indeed, since M†≫ M coincides with M onZ ∗∗(M), we see that the optimal policyπ∗

of M has unique recurrent classZ ∗∗(M) in M†. Yet, π∗ /∈ Π∗(M†), henceZ ∗∗(M)∩Z−(M†) ̸=∅,
i.e., there exists z ∈ Z ∗∗(M) such that ∆∗(z; M†) > 0. We further link the number of visits of
this z to the total number of visits of Z ∗∗(M) with the same technique that the one used to
convert (IV.10) to (IV.11).

Introduce the reward function f (z′) := 1(z′ = z), and let g f , h f ,∆ f the gain, bias and gaps
functions of the policy π∗ in M†. There exists ε > 0 such that g f (s) = ε for all s ∈ S . Letting
C := sp

�

h f
�

∨maxz′
�

�∆ f (z′)
�

�<∞. For all T ≥ 1, we have

NT (z) =
T
∑

t=1

f (Zt) =
T
∑

t=1

�

ε+
�

eSt
− p(Zt)

�

h f −∆ f (Zt)
�
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≥ Tε− C − CNZ ∗∗(M)c(T ) +
T
∑

t=1

�

eSt+1
− p(Zt)

�

h f

(†)
≥ Tε− C(1+m′)− C

Ç

T log
�

2T
δ′

�

∼ Tε.

where (†) holds with probability 1
2δ
′ > 0 uniformly for T ≥ 1, by invoking a time-uniform

Azuma-Hoeffding (Lemma I.22) to lower-bound the right-hand martingale. We accordingly
obtain, when T →∞,

EM†
[Reg(T )]≳ 1

2εδ
′∆∗(z; M†)T = Ω(T ). (IV.12)

So (IV.12) is in contradiction with the consistency of the algorithm.

(STEP 4) If the algorithm is consistent, has sub-linearly many episodes, then for all M ∈M such
that Cnf(M) ̸=∅, we have:

PM
�

∀T,∃t ≥ T : g∗(M) = gπt−1(St−1, M) and Reach(πt , St , M)∩Z−(M) ̸=∅
�

= 1. (IV.13)

Moreover, the stopping times t enumerating the time-instants such that g∗(St−1, M) = gπt−1(St−1, M)
and Reach(πt , St , M)∩Z−(M) ̸=∅ are exploration times; Hence there are infinitely many of them
with probability one.

Proof. This is obtained by combining (IV.8) of (STEP 2) and (IV.9) of (STEP 3). We have:

PM(∀T,∃t ≥ T : g∗(St−1, M) = gπt (St , M) and St ∈ Rec(πt)) = 1, and (IV.14)

PM
�

∀T,∃t ≥ T : Reach(πt , St , M)∩Z−(M) ̸=∅
�

= 1. (IV.15)

By non-degeneracy of M , if g∗(St , M) = gπt (St , M) and St ∈ Rec(πt), then Reach(πt , St , M) =
Z ∗∗(M) which is disjoint from Z−(M). Define:

τ1 := inf{t ≥ 1 : g∗(St , M) = gπt (St , M) and St ∈ Rec(πt)},

τ2i := inf
�

t > τ2i−1 : Reach(πt , St , M)∩Z−(M) ̸=∅
	

,

τ2i+1 := inf{t > τ2i : g∗(St , M) = gπt (St , M) and St ∈ Rec(πt)}

Then (τi) is an increasing sequence of stopping times, and by (IV.14) (IV.15) applied in tandem,
we show by induction that PM (τi <∞) = 1 for all i ≥ 1. By non-degeneracy of M , at t = τ2i+1,
the current policy is gain-optimal and the process is currently on the optimal class Z ∗∗(M).
Because Z ∗∗(M) is the disjoint union of sink components of Z ∗(M), hence the only way to
exit Z ∗∗(M) is by playing a z ∈ Z−(M). Therefore, we see that for t = τ2i, we must have
g∗(St−1, M) = gπt−1(St−1, M) with πt−1 ≠ πt . Accordingly, every τ2i are change of episodes that
are exploration episodes.

This proves Proposition IV.3. ■
The last part of Theorem IV.2, that (2)⇒ (1), is deferred to the appendix. The main take-away

of this paragraph is the result below.

Corollary IV.4. If M ∈M satisfies Cnf(M) ̸=∅, then every consistent episodic algorithm
with sub-linearly many episodes have well-defined regret of exploration.

While Corollary IV.4 is enough to properly analyze the regret of exploration of optimistic
algorithms, I am still concerned about how difficult it is to satisfyingly define what is exploration.
For instance, the definition of exploration times requires the algorithm to be episodic and to
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maintain an internal policy that is used to navigate the environment. Without this internal
policy, it is harder to define what exploration is. Actually, even if the algorithm maintains an
internal policy, its performance may be decorrelated from how good this policy is, because the
internal policy may be too volatile. Asking for the number of episodes to grow sub-linearly
is a simple way to circumvent the issue, yet, I am not very satisfied with this solution. While
many existing algorithms fit the episodic framework described with Algorithm IV.1, episodes are
more of a matter of design than a matter of analysis or behavior, and the assumption on the
sub-linearity of the number of episodes is only to make sure that the two are related. In the
end, algorithms play actions, not policies. For instance, the algorithm ECoE (Algorithm III.2)
does not fit into the framework of episodic algorithms like Algorithm IV.1. Perhaps, the most
natural approach to exploration may be to claim that an exploration time should be a time
instant when the played pair is the first to be sub-optimal after a long time period of optimal
play. We immediately see that there is no canonical choice for the duration of the time period of
optimal play. One may choose it to be 0 and claim that any time instant when a sub-optimal pair
is played is an exploration time. Doing so reveals a troubling problem: The regret of exploration
of UCB Auer (2002) is then linear, although UCB is episode-less and is perhaps the algorithm that
emboddies optimism the best. This is why, in the definition of exploration times, we ask for the
previous policy to be optimal. This guarantees that the starting episode is “well conditionned”.
Removing this conditionning leads to a finer notion that I call the sliding regret, and this is the
subject of the last Chapter 14. This raises a new question, which is how poorly conditionned
we may choose exploration times, because the condition (1) of Definition IV.1 may be stronger
than required. While this direction seems interesting, it appeared disproportionally technical to
address a phenomenon that was never investigated in the first place. I have made the choice of
simplicity with restrictions over the difficulty of a completely general approach. Nonetheless,
this interesting direction can be outlined with the following questions:

How should the trajectory of play be decomposed? Can exploitation and exploration be
trajectorially isolated and distinguished? How can we describe and classify the various
shapes of first order regret curves? Can we quantify how sub-optimal play is spread
during a run?

We barely scratch the surface of these questions in Chapter 14. In the next few chapters, we
focus on the regret of exploration introduced by Definition IV.2.

11.3 The regret of exploration and the doubling trick

With Figure 11.0.1, we have observed that the regret at exploration times of UCRL2 seems
to increase overall. This follows from a much more general principle that is quite intuitive:
If a change of episode requires an increase of visit relatively to the initial visit count, and if
deployed policies do not play actions with vanishing probabilities (see (IV.16)), then the regret
of exploration grows linearly on recurrent models at least.

Theorem IV.5. Fix a pair space Z and letM be the space of all recurrent models with pairs
Z . Let f : N→ (0,∞) such that lim f (n) = +∞. AnyM -consistent episodic learner (πt)
satisfying:

∀k ≥ 1,∃z ∈ Z , Ntk+1
(z)≥ Ntk

(z) + f
�

Ntk
(z)
�

∃c > 0,∀t ≥ 0,∀(s, a) ∈ Z , πt(a|z)≥ c or πt(a|z) = 0
(IV.16)

has linear regret of exploration on the explorative sub-space ofM , i.e., for all M ∈M+, we
have RegExp(T ) = Ω(T ) a.s. when T →∞.
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Proof. Let M ∈M+. By Theorem IV.2,
�

�Kexp

�

� =∞ almost surely. Denote (tk(i)) the enumeration
of exploration times. Because M is recurrent, every policy is recurrent on M thus Reach(π, M , s)∩
Z−(M) ̸=∅ if, and only if gπ(M)< g∗(M), where s is an arbitrary state. From (IV.16), we see
that:

P
�

lim
t→∞

min{Nt(s, a) : πt(a|s)> 0}=∞
�

= 1. (IV.17)

It follows that lim inf(tk(i)+1 − tk(i)) =∞. In particular, for all T ≥ 0, we have:

RegExp(T )
(∗)
≥ lim sup

i→∞



E(πt ),M





tk(i)+T−1
∑

t=tk(i)

∆∗(Zt ; M)



− sp(h∗(M))





(†)
≥ lim sup

i→∞

�

E(πt ),M
�

T min(µπtk(i) (M))∆∗min(M)− sp(D(πtk(i)
; M))

�

− h∗(M)
�

(‡)
≥ Tα− β

where (∗) follows from Proposition I.11; (†) is obtained by writing the Poisson equation of πtk(i)

for the reward function fi(z) = 1(z = zi) where zi is any sub-optimal pair played by πtk(i)
; and (‡)

introduces α :=minπmin(µπ(M))∆∗min(M)> 0 and β = sp(h∗(M)) +maxπ D(π; M)<∞.

This applies to UCRL2 and more generally to all algorithms relying on the doubling trick
(DT) to manage episodes, where one can pick f (n) = n ∨ 1. This includes UCRL2 Auer et al.
(2009), REGAL Bartlett and Tewari (2009), KLUCRL Filippi et al. (2010), UCRL2B Fruit et al.
(2020), SCAL Fruit et al. (2018), UCRL3 Bourel et al. (2020), EBF Zhang and Ji (2019) and also
PMEVI (see Chapter 7) (up to mild modifications of (IV.16) for a few of them). I conjecture that
Theorem IV.5 can be generalized beyond the recurrent setting, but a generalization of the proof
will encounter many technical challenges that are not especially interesting nor informative to
address, especially to cover weird exotic algorithms that do not exist.

Theorem IV.5 points out a disease: The local regret of the current optimistic algorithms
is ill-behaved, because the regret of exploration of these methods grows linearly. Like every
desease, we will attempt at curing it without too many side-effects. So, is it possible to alter
these algorithms and have sub-linear regret of exploration without hurting the minimax regret
guarantees? The answer is positive. This is achieved by changing the episode rule and is the
subject of the next chapters.



Chapter 12

Managing Episodes with the
Performance Test (PT)

In Chapter 11 with Theorem IV.5, the doubling trick (DT) has been shown to make the regret
of exploration grow linearly. This is much of a surprise since the doubling trick essentially
makes episodes double in size over time, and the phenomenon appears strikingly on experiments
(Figure 11.0.1). In this chapter, we present the Performance Test (PT) to manage episodes and
enjoy sublinear regret of exploration.

12.1 Managing episodes solely with optimism

The philosophy behind the performance test is purity: If the algorithm’s design is centered
around optimism, then optimism should solely drive the algorithm, and the doubling trick is
only but a trick that is completely artificial. After all, with the doubling trick, an episode ends
regardless of the data acquired during the episode and ends only because enough data have been
gathered. Instead, an optimistic learner should play a policy because it is an optimistic policy,
and only drop it because the policy is not optimistically optimal anymore. Caution is required
however, because in opposition to multi-armed bandits where episodes are not necessary (UCB
Auer (2002) is not episodic for instance), episode-less optimistic algorithms may endure linear
regret for Markov decision processes. By episode-less algorithms, we mean that tk+1 := tk + 1,
hence that the policy is updated at every time-step. The necessity of episodes is discussed by
Ortner (2010) for UCYCLE, a version of UCRL2 specialized to deterministic transition models.

1 2∗

0.5$ 0.5$

∗0$

†

0$

†

Figure 12.1.1: A degenerate model where optimistic algorithms must manage episodes
carefully.

The problem arises when the model is degenerate (Definition IV.3), for instance with the
model described by Figure 12.1.1. On this model, any gain optimal policy must either cycle
with (1,∗) or with (2,∗) because the Bellman gaps of the transitioning pairs (1, †) and (2, †)
are positive. In fact, Z ∗∗(M) = {(1,∗), (2,∗)} has two communicating components. In practice,
UCRL2 will hesitate between whether (1,∗) is better than (2,∗) or not. Ortner (2010) shows
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that the episode-less version of UCRL2 will travel from 1 to 2 and 2 to 1 linearly often, hence its
regret grows linearly.

Rather than changing episode as soon as the current policy is not optimistically optimal
anymore, we suggest to change it when it not optimistically optimal enough:

tk+1 := inf{t > tk : gπt−1(Mt) + f (T )e ≤ g∗(Mt)} (PT)

where f : N→ R+ is a non-increasing vanishing function that quantifies how lazy the updates
should be and g(π,Mt) and g∗(Mt) are the policy-wise and global optimistic gain vectors (see
Definition II.2). If f is sufficiently large, the back-and-forth behavior observed by Ortner (2010)
disappears, as established by Theorem IV.6. We call this new rule the performance test. Given
a standard optimistic algorithm (such as UCRL2), we use the suffix “-PT” to indicate that the
episode rule is enriched with (PT).

There are two ideas behind the performance test. First, a sub-optimal policy cannot be
played for too long because its optimistic value should drop quickly; Hence (PT) should offer
better regret of exploration guarantees than (DT). Second, the sub-optimality tolerance f (t)
should be chosen correctly so that the number of episodes under (PT) remains under control
and no back-and-forth behavior (Ortner (2010)) is possible.

12.2 Guarantees of the performance test

The performance test accordingly promises that (1) the minimax regret guarantees remain the
same and (2) the regret of exploration guarantees are sub-linear. The sine qua non requirements
are regret guarantees and are treated first in Section 12.2.2. Regret of exploration guarantees
are investigated in Section 12.2.3.

For reference, the pseudo-code of UCRL2-PT is given with Algorithm IV.3. The confidence
region is chosen as a product of ℓ1-balls of radius

p

ξt(z) that quantifies the optimistic bonus
and is of form

p

S log(C t)/Nt(z) by Weissman’s inequality (Lemma I.23). The precise value of
C > 0 doesn’t matter much in the analysis, provided that the confidence region holds with high
probability.

Algorithm IV.3 UCRL2-PT

Mt :=
§

r̃ : ∀z ∈ Z , |r̃(z)− r̂t(z)|
2 ≤

r

log(C t)
Nt (z)

ª

×
�

p̃ : ∀z ∈ Z ,∥p̃(z)− p̂t(z)∥
2
1 ≤ ξt(z)

	

1: k← 0, initialize πk;
2: for t = 0,1, . . . do
3: if (DT) or (PT) then
4: uk← EVI(Mt , 0, 0S );
5: πk← any π such that Lt(uk) =L π

t (u
k)

6: k← k+ 1; tk← t;
7: end if
8: Set πt ← πk and iterate πt ;
9: end for

Remark that the architecture of Algorithm IV.3 is closer to EVI-based algorithm (Algo-
rithm II.2) than it is to UCRL2 alone. The pseudo-code of Algorithm IV.3 is straightfully adapted
to any EVI-based algorithm, providing KLUCRL-PT, UCRL2B-PT etc. However, the analysis is
specific to UCRL2 although it probably could be generalized.
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12.2.1 Minimax regret of UCRL2-PT
The regret analysis of UCRL2-PT is exactly the same than the one of UCRL2, and fit the optimistic
framework exposed in Section 6.4. Specifically, we obtain

Reg(T )≤ D(M)|K (T )|+O
�Ç

DSAT log
�

T
δ

�

�

(IV.1)

provided the confidence region holds universally in time, i.e., that M ∈
⋂T−1

t=0 Mt , usually called
“the good event”. 1 Picking a time adaptive confidence level δ(t) := 1

t , one can also make sure
that (IV.1) holds in expectation for all T ≥ 0. The number of episodes |K (T )| of UCRL2-PT are
left to be upper-bounded. This is done in the next section.

12.2.2 Number of episodes under (PT)

The number of episodes of UCRL2-PT are directly related to the slackness function f (T). If
f (T ) is large, (PT) does not trigger often and (DT) manages most of episodes. If f (T ) is small,
the number of episodes is subjected to be much higher. Theorem IV.6 provides a bound on the
number of episodes of UCRL2-PT. A notable difference from (DT) is that the bound holds with
high probability rather than with probability one.

Theorem IV.6. Introduce the good event E (T) as follows. Let E (t, t ′; z) :=
(∥p̂t:t ′(z)− p∥2

1 ≤ 4(Nt ′(z) − Nt(z)) log
�

4SAt ′3/δ
�

) and set E (T) :=
⋂T−1

t=0

⋂T−1
t ′=t

⋂

z∈Z E (t, t ′; z), where p̂t:t ′(z) is the empirically observed kernel at z
from time t to t ′ − 1. On the good event E (T ), the number of episodes of UCRL2-PT up to
time T is upper-bounded by:

|K (T )| ≤
24D

p

S log(T )
f (T )

+O






DS

3
2 A

√

√

√

√

log
�

SAT 3

δ

�

log2(T )

f (T )






. (IV.2)

Sketch of proof. The doubling trick accounts only for logarithmically many episodes which
is negligible in front of the number of other episodes. We thus ignore episodes interrupted by
(DT). The fact that episode k ends at time tk+1 implies that

gπ
k
(Mtk+1

) + f (tk+1)≤ gπ
k+1
(Mtk+1

) (IV.3)

Because πk is optimistically optimal at time tk, it means that over {tk, . . . , tk+1}, either g(πk,Mt)
or g(πk+1,Mt) has varied by about f (tk+1). However, we know that the gain is D-Lipschitz by
Theorem II.1. Following this, we show that if π ∈ {πk,πk+1}, then



gπ(Mtk+1
)− gπ(Mtk

)




∞ ≤ D
�

P̂tk+1
− P̂tk





1
+


ξtk+1
− ξtk





∞

�

Therefore, from (IV.3), we deduce that, over {tk, . . . , tk+1}, there must be a variation of (1) em-
pirical kernels P̂t or (2) optimistic bonuses ξt of order at least D−1

p

α log(tk+1)/tk+1. On the
good event, these variations can be related to variations of time (i.e., tk+1 − tk) and visit counts

1This event is too strong actually., To be precise and properly show that the algorithm is consistent, we should
pick

⋂T−1
t=
p

TMt instead, so that the probability that the good event holds is an increasing function of T . This is
important to prove that UCRL2-PT is consistent, but we ignore this subtlety for simplicity.
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(i.e., Ntk+1
(z)− Ntk

(z)). We then derive a collection of inequalities that guarantees that, when
there is a change of episode, visit counts or time increase enough relatively to f (tk+1), hence
relatively to f (T). The inequality that later accounts for the dominant part in the number of
episodes is the following:

f (tk+1)
24D

≤

√

√

√
S

Ntk
(z)

�
Æ

log(C tk+1)−
Æ

log(C tk)
�

. (IV.4)

This inequality quickly leads to the regret bound on |K (T )|. The most technical part is to bound
the second order term.

Formal proof of Theorem IV.6. For simplicity, we assume that the rewards are known, i.e.,
that Rt(z) = {r(z)} for all z ∈ Z and t ≥ 0. The goal is to show that if there is a change of
episode, then necessarily, transition kernels or confidence bound must have moved by some
tractable quantity. Introduce the set of standard episodes K0

K0 := {k ∈K : ∀z ∈ Z , Ntk+1
(z)< 2Ntk

(z)}. (IV.5)

Therefore, an episode k is non-standard if either (1) there is z ∈ Z visited on {tk, . . . , tk+1 −
1} such that Ntk

(z) = 0 or (2) there is z ∈ Z such that Ntk
(z) ≥ 1 and Ntk+1

(z) ≥ 2Ntk
(z).

Accordingly, non-standard episodes are exactly those interrupted by the doubling trick (DT).
On non-standard episodes, there must be a pair that doubles its visit count, so K \K0 is of
logarithmic cardinal. This will be negligible in front of bounds on the cardinal of K0.

(STEP 1) On the good event E (T ), for all k ∈K0, we have

1
2

f (T )≤ D
�

p̂tk
− p̂tk+1





1
+


ξtk
− ξtk+1





∞

�

(IV.6)

Proof. By definition of k ∈K0, we have:

gπ
k
(Mtk+1

) + f (tk+1)≤ g∗(Mtk+1
) = gπ

k+1
(Mtk+1

).

Further using that gπ
k
(Mtk

) = g∗(Mtk
) and writing A :=

�

gπ
k
(Mtk+1

)− gπ
k
(Mtk

)
�

and B :=
�

gπ
k+1
(Mtk+1

)− gπ
k+1
(Mtk

)
�

, this is equivalent to

A− B≤ gπ
k+1
(Mtk

)− gπ
k
(Mtk

)− f (tk)
(∗)
≤ − f (T )

where (∗) follows from gπ
k+1
(Mtk

) ≤ gπ
k
(Mtk

) and f (tk) ≥ f (T). Accordingly, when the
episode changes, either A ≤ −1

2 f (T) or B ≥ 1
2 f (T). When the first inequality holds, we say

that the episode is type I and when the second holds, the episode is said type II. Introduce the
Hausdorff distance on subsets ofM

dHausdorff(M1,M2) :=max

�

sup
p1∈M1

inf
p2∈M2

∥p2 − p1∥1, sup
p2∈M2

inf
p1∈M1

∥p1 − p2∥1

�

. (IV.7)

Recall thatMπ
t := {r} ×

∏

s∈S
∑

a∈A (s)Pt(s, a)π(a|s) is the confidence region associated to a
policy. The policies deployed by UCRL2-PT are deterministic, so we focus on π ∈ ΠSD. One
checks that:

dHausdorff

�

M̃π
tk

,M̃π
tk+1

�

≤




p̂πtk
− p̂πtk+1







1
+




ξπtk
− ξπtk+1







∞

= sup
z∈π



p̂tk
(z)− p̂tk+1

(z)




1
+ sup

z∈π



ξtk
(z)− ξtk+1

(z)




∞.



210 Chapter 12. Managing Episodes with the Performance Test (PT)

Write ProjU (·) a projection on U ⊆M for ∥−∥1, i.e., ProjU (p1) is any p2 ∈ U minimizing the
ℓ1-distance to p1. In particular, for all p1 ∈ V , we have ∥p1 − ProjU (p1)∥1 ≤ dHausdorff(U ,V ).
So, if the episode k is type I, we have −A≥ 1

2 f (T ) thus:

1
2 f (T )≤ gπ

k
(Mtk

)− gπ
k
(Mtk+1

)
(∗)
= g(r, p̃π

k

tk
)− g(r, p̃π

k

tk+1
)

(†)
≤ g(r, p̃π

k

tk
)− g(r, ProjMπk

tk+1
(p̃π

k

tk
))

(‡)
≤ sp(h(r, p̃π

k

tk
))

�
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(z)




1
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z∈πk



ξtk
(z)− ξtk+1

(z)
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�

(§)
≤ D sp(r)

�

p̂tk
− p̂tk+1





1
+


ξtk
− ξtk+1





∞

�

where (∗) introduces the optimistic models (Corollary II.12) of πk at respective times tk and
tk+1; (†) uses that p̃π

k

tk+1
is an optimistic model of πk at time tk+1; (‡) invokes the gain devi-

ation inequality (Theorem II.1); and (§) uses that πk is an output of EVI at time tk, so that
sp(h(r, p̃π

k

tk
)) = sp(h∗(Mtk

))≤ D(Mtk
)≤ D(M) on the good event, see Proposition II.2. Type II

episodes are handled with a similar computations, showing that

1
2 f (T )≤ D sp(r)

�

p̂tk
− p̂tk+1





1
+


ξtk
− ξtk+1





∞

�

(IV.8)

on the good event as well. So, on the good event, (IV.8) holds for all k ∈K0.

(STEP 2) On the good event E (T ), for all z ∈ Z , we have



p̂tk+1
(z)− p̂tk

(z)


≤ 4
r

S log
�

4SAT 3

δ

�

Æ

Ntk+1
(z)− Ntk

(z)

Ntk
(z)

(IV.9)

Proof. Pick z ∈ Z . For short, denote n = Ntk
(z) and m = Ntk+1

(z)− Ntk
(z). Because k ∈ K0 is

not interrupted by the doubling trick, we know that m ≤ n. Denote Wt(z) := Nt(z)p̂t(z) the
aggregate empirical distribution of the transition z. Then a straight forward computations shows
that

p̂tk+1
(z)− p̂tk

(z) =
1

n+m

�

Wtk
(z) +
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1(Zt = z)eSt+1
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Now, on the good event E (T ),
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(z)− Ntk
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.
(IV.10)

Combined, we obtain that on E (T ),


p̂tk+1
(z)− p̂tk

(z)




1
≤

1
n+m

�

m
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r

4nS log
�
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m
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1+
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δ
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p
m

n

where the last inequality is obtained using m≤ n. We conclude accordingly.
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(STEP 3) For all z ∈ Z ,

�

�ξtk+1
(z)− ξtk

(z)
�
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p

S log(C T )
�

Ntk+1
(z)− Ntk

(z)
�
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(z)3/2}

+
(tk+1 − tk)

p
S

2tk
(IV.11)

Proof. Fix z ∈ Z . Recall that ξt(z) =
p

S log(C t)/Nt(z). We expand ξtk+1
(z)− ξtk

(z) as:

Æ

S log(C tk+1)

�

1
Æ

Ntk+1
(z)
−

1
Æ

Ntk
(z)

�
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(IV.12)

Term B is left untouched.

(STEP 4) On the good event E (T ), for all k ∈K0, one of the following holds:

∃z ∈ Z , Ntk+1
(z)≥max







Ntk
(z)



1+
f (T )Ntk

(z)

210D2S log
�

4SAT 3

δ

�



, 1







(type A)

∃z ∈ Z , Ntk+1
(z)≥max







Ntk
(z)
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√
f (T )Ntk
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28D2S log(C T )
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f (T )
24D
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√

√
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Ntk
(z)

�
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log(C tk+1)−
Æ

log(C tk)
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(type C)

Proof. By using the explicit variations of empirical kernels (IV.9) and of bonuses (IV.11) in (IV.6),
we see that on the good event E (T ), for all k ∈K0, there must be a z ∈ Z such that one of the
following holds:

f (T )
24D

≤ 4
r

S log
�

4SAT 3

δ
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Æ
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Æ

S log(C T )
Ntk+1

(z)− Ntk
(z)

max{1, Ntk
(z)3/2}
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Æ
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log(C tk)
�

. (type C)

There are at most SA episodes such that the z achieving one of the conditions above has never
been visited yet, i.e., such that Ntk

(z) = 0. Such episodes belong to K \K0, so can be ignored
by assumption. Therefore, we can change max{1, Ntk

(z)λ} to the simpler Ntk
(z)λ. The main

statement is obtaining by solving the equations in Ntk+1
(z), Ntk+1

(z) and tk+1 respectively.

(STEP 5) On the good event E (T ), the number of episodes is bounded by:

|K (T )| ≤
24D
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S log(T )
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+O
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�
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. (IV.13)
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Proof. Episodes are partitioned into standard episodes K0 and non-standard episodes K0 \K .
The elements ofK0 of (type A), (type B) and (type C) are respectively denotedKA,KB andKC.
Their respective cardinals are KA, KB and KC for short.

We start by upper-bounding K \K0. Such episodes are due to the doubling trick (DT)
triggering, and we know since Auer et al. (2009) that doubling trick induces at O(SA log(T))
episode.

We now upper-bound the number of (type A) episodes. For such episodes, there is some
z ∈ Z that accounts for n≥ 1

SAKA elements of KA. Let k1, k2, . . . , kn the respective episodes. We
have by Equation (type A):

∀i < n, Ntki+1
(z)≥ Ntki+1

(z)≥ Ntki
(z)



1+
f (T )Ntki

(z)

210D2S log
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with Ntk2
(z)≥ 1. Setting ui := Ntki+1

(z), we set λ := T f (T )2−10D−2S−1 log−1
�

4SAT 3

δ

�

and ω = 1,
then apply Lemma IV.9. Since un−1 = Ntkn

(z)≤ T , that

n− 1≤ 3 · 25D
r

S f (T )−1 log
�

4SAT 3

δ

�

log(T )

Using that n≥ 1
SAKA and solving in KA, we obtain

KA ≤ SA+ 27 · DS3/2A

√

√ 1
f (T )

· log
�

4SAT 3

δ

�

log(T ). (IV.14)

We continue by upper-bounding the number of (type B) episodes. The proof is similar. There
is some z ∈ Z that accounts for n ≥ 1

SAKB elements of K0,B. Let k1, k2, . . . , kn the respective
episodes. We have by Equation (type B):

∀i < n, Ntki+1
(z)≥ Ntki+1

(z)≥ Ntki
(z)
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√

√

√

f (T )Ntki
(z)

28D2S log(C T )



,

with Ntk2
(z) ≥ 1. Setting ui := Ntki+1

(z), we set λ := T f (T)2−8D−2S−1 log−1(C T) and ω = 1
2

and apply Lemma IV.9. Since un−1 = Ntkn
(z)≤ T , we obtain

n− 1≤ 3 · 2
4
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Using that n≥ 1
SAKB and solving in KB, we obtain
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(IV.15)

We finish with the upper-bound of the number of (type C) episodes. Denote n = KC and
introduce k1, k2, . . . , kn the elements of K0,C. By Equation (type C), we have

2−4D−1
n
∑

i=1

f (tki
)≤

n
∑

i=1

p
S
�
q

log(C tki+1)−
q

log(C tki
)
�

≤
Æ

S log(C T ).

We have
∑n

i=1 f (tk)≥ nf (T ) = KC f (T ). We obtain accordingly:

KC ≤
24D
f (T )

·
Æ

S log(T ) (IV.16)

This concludes the proof.

This concludes the proof of Theorem IV.6. ■
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Corollary IV.7. If f (T ) =ω(T−
1
2 ), then the regret guarantees of UCRL2-PT are the same

than those of UCRL2 Auer et al. (2009). Specifically,

EM[Reg(T )] = O
�

DS
Æ

AT log(T )
�

(IV.17)

with the same numerical constants.

12.2.3 Regret of exploration under (PT)

The sine qua non requirement of any episode rule has been established: The performance test
(PT) does not harm the minimax regret guarantees. The whole point is to show that (PT) further
improves the regret of exploration guarantees. There is however a significant subtlety because a
few technical assumptions are required. The first is that instead of using the vanilla performance
test, we use the regenerative performance test below:

tk+1 := inf
�

t > tk : gπt−1(Mt) + f (T )e ≤ g∗(Mt) and ∃t ′ ∈ [tk, t), St = St ′
	

(RPT)

Namely, the regenerative property forces the episode to wait until the current state St has
already been seen during the episode. This doesn’t change the various properties provided by
Theorem IV.6 and Corollary IV.7 nor their proofs. I don’t know if the technical modifications
leading (RPT) are necessary over (PT), but the regret of exploration guarantees are only es-
tablished for (RPT). In the original paper Boone and Gaujal (2023b), regret of exploration
guarantees where only provided for deterministic Markov decision processes. In this manuscript,
we extend this result to much broader settings using a more mature technique. The setting in
which (RPT) offers sublinear regret of exploration guarantees is not general however, because
of actual limitations of optimism that are better discussed in the next chapter. The result holds
under (1) a non-degeneracy assumption of the model (Definition IV.3) and (2) a relative interior
assumption for the hidden model (see Assumption 5), that is close in spirit to knowing the
support of transitions beforehand.

Assumption 5 (Interior kernels). For all t ≥ 1 and z ∈ Z , p(z) is interior to Pt(z), i.e.,
p̃(z)≪ p(z) for all p̃(z) ∈ Pt(z).

Theorem IV.8. Let M ∈M+ a non-degenerate explorative model. Assume that the confidence
region of UCRL2-PT satisfies Assumption 5. Provided that f (t) = o

�

1
log(t)

�

, there exists a
constant C(M)<∞ such that UCRL2-PT satisfies:

RegExp(T )≤ C(M) log(T ) + o(log(T )). (IV.18)

Regarding how UCRL2-PT is currently written (Algorithm IV.3), Assumption 5 only covers
ergodic models. However, in the design of UCRL2-PT, we can also impose that Pt(z) ⊆ {p′(z) :
p′(z)≪ p(z)}, hence incorporating prior knowledge on the support of kernels, to obtain regret
of exploration guarantees beyond ergodic models. This covers deterministic models and known
kernels settings as special cases. The proof of Theorem IV.8 is postponed to the next chapter,
that is dedicated to the proof technique.

Combining Corollary IV.7 and Theorem IV.8, the performance test allows for any slackness
function f which is simultaneously o

�

1
log(t)

�

and ω
�

1p
t

�

. In practice, if the diameter of the
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model is small, taking f (t) as small as possible seems better. If the diameter of the model is
large, one may want to be careful and pick f (t) closer to 1

log(t) , for instance c
log2(t)

with c≪ 1. If
f (t) is large, the performance test doesn’t trigger and the behavior of UCRL2-PT is the same as
UCRL2’s.

12.2.4 Experimental insights

In the remaining of the chapter, we rather provide experimental insights regarding the behavior
of (PT). The simplest setting is a two-arm bandit example, say with two arms a1, a2 of respective
mean rewards r(a1) = 0.5 and r(a2).
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Figure 12.2.1: The behavior of UCRL2-PT on a two-arm bandit.

In Figure 12.2.1 (to the left), we display the regret of UCRL2 and UCRL2-PT over a single
run. When none of the algorithms has better regret than the other, we nonetheless observe that
the bad episodes of UCRL2-PT (where the regret slope is not null) are shorter than UCRL2’s,
suggesting that the regret of exploration is indeed better. To the right of Figure 12.2.1, we deep-
dive into the behavior of UCRL2-PT by displaying the optimistic gaps of the suboptimal arm
over time. The current policyπk corresponds to which arm is drawn over {tk, . . . , tk+1−1} and we
know that the algorithm changes episodes when gπ

k
(Mt) + f (t)≤ g∗(Mt), hence the behavior

of the algorithm is driven by the value of the optimistic gap ∆̃t(a1; a2) := ga1(Mt)− ga2(Mt),
plotted in Figure 12.2.1 (to the right). On the time-window {t, . . . , t + T − 1}, the regret is
proportional to the amount of time spent drawing arm a2, highlighted in red on the time-axis. A
bad episode starts when ∆̃t(a1; a2) drops below − f (t), then is interrupted as soon as it goes
above f (t) again. The filled region represents the points (x , y) for |y| ≤ f (x).

We observe that when a bad episode occurs, arm a2 is triggered and its bonus decreases,
making the associated optimistic gap drop quickly despite the noise. The update of empirical
estimates is observed noise and is clearly non-negligible with respect to the upward drift induced
by a decrease of the optimistic bonus of a2. Still, that drift forces the bad episode to end rather
quickly. We then switch to a good episode where the noise amplitude is much smaller. This is
because the optimal arm a1 is visited more often than a2, hence its empirical reward estimate
changes slower. We also observe a drift (there downward) which is due to the evolution of
reward bonuses, but the drift is weaker because the visit counts of a1 is much higher.

We accordingly observe that good episodes last, while bad episodes don’t. Hence the regret
of exploration is small.
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12.3 Computational heaviness of the performance test

The performance test suffer from obviously heavy computational performance. At every time
step, the optimistic value of the current policy πk and of the whole confidence region Mt
must be computed by running EVI. These additional computations can make (PT) unreliably
performance hungry when the numbers of states and actions grow large. Thankfully, (PT) can
be substantially accelerated with the combination of two methods.

(1) Memorization (M): From t to t + 1, the confidence region is barely changed. Therefore,
by initializing the EVI at time t + 1 with the result of EVI at time t, one should expect
EVI to converge much faster. This doesn’t modify the algorithm’s behavior.

(2) Sparse (PT) (S): Even if EVI converges almost instantly, running EVI at each time-step
significantly slows down the algorithm. To address this, instead of always checking (PT),
only test it when t − tk is a power of 2. Formally, (PT) is replaced by (PT*):

log2(t − tk) ∈ N and gπt−1(Mt) + f (T )e ≤ g∗(Mt) (PT*)

Although this modification slightly alter the behavior of the algorithm, its analysis is
similar to (PT)’s.

As shown in Table 12.3.1, the combination of these two modifications makes the running
times of (PT) variants acceptable in comparison to the originals.

UCRL2
KLUCRL
UCRL2B

Original

Pure (PT
)

(PT
) +

M

(PT
) +

S

(PT
) +

M +
S

200k
157k
167k

1.0k
0.2k
0.5k

5.2k
2.7k
2.9k

74k
36k
59k

82k
62k
77k

Table 12.3.1: Iterations per second of UCRL2, KLUCRL and UCRL2B; the originals and the
(PT) corrections with various acceleration options. The environment is a 5-state RiverSwim.
These values have been obtained by running each algorithm for 100k iterations and take the
average per-step time.



Appendix of Chapter 12

We provide below a numerical lemma used in the proof of Theorem IV.6.

Lemma IV.9. Let T ≥ 3 and fix λ ≤ T. Let ω ∈ (0,1] and (xn | n ≥ 1) an integer-valued
sequence with x1 := 1 such that

xn+1 ≥
�

1+
�

λxn

T

�ω�

xn. (IV.19)

If n is such that xn ≤ T, then n≤ 3
�

T
λ

�
ω
ω+1 log(T ).

We further conjecture that the log(T) is not necessary, i.e., that if xn ≤ T then n =
O((T/λ)ω/(ω+1)).

Proof. Define the integer valued sequence xn+1 = ⌈(1+ (λxn/T )ω)xn⌉ initialized to x1 = 1 and
analyze the increments of (xn). Observe that xn+1 > xn, so xn+1 ≥ xn + 1 and the sequence
diverges to infinity. Setting β := 1

ω+1 ∈ (0, 1), for k ≥ 1, we get

xn+1 = xn + k ⇐⇒ xn ∈
�

�

T
λ

�1−β
(k− 1)β ,

�

T
λ

�1−β
kβ
�

=: Ik.

The length of Ik is decreasing with k and in particular Leb(Ik)≤ Leb(I1) = (
T
λ )

1−β . Accordingly,
the integer-valued sequence (yn) with y1 = 1 defined by its increments

yn+1 = yn + k ⇐⇒ yn ∈
�

�

T
λ

�1−β
(k− 1),

�

T
λ

�1−β
k
�

(IV.20)

satisfies: ∀n≥ 1, yn ≤ xn. Moreover,

∀n≥ 1, yn+1 = yn +
 

yn

�

λ
T

�1−β£
(IV.21)

≥ yn

�

1+
�

λ
T

�1−β�
(IV.22)

≥ . . . (IV.23)

≥
�

1+
�

λ
T

�1−β�n
. (IV.24)

Let n≥ 1 such that xn ≤ T . Then yn ≤ T , hence (1+ (λ/T )1−β)n−1 ≤ T . Thus

(n− 1) log
�

1+
�

λ
T

�1−β�
≤ log(T ). (IV.25)

Since λ≤ T , we have (λ/T )1−β ∈ (0,1] so log(1+ (λ/T )1−β)≥ 1
2(λ/T )1−β . We obtain:

n≤ 1+ 2
�

T
λ

�1−β
log(T )≤ 3

�

T
λ

�1−β
log(T ) (IV.26)

and as 1− β = ω
ω+1 , this proves the claim.
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Chapter 13

The Vanishing Multiplicative
Condition (VM)

In Chapter 12, we provided (PT) as an enhancement of episode management and claimed that it
guarantees sub-linear regret of exploration (Theorem IV.8). However, the claim is short of a proof;
The minimax guarantees under (PT) rely on a difficult upper-bound on the number of episodes
(Theorem IV.6) that works for ℓ1-confidence regions (II.5) that is not easily generalized to KL-
confidence regions (II.6) or Bernstein confidence regions (II.7), and even harder to generalize if
the algorithm is PMEVI-based (Algorithm II.5) rather than EVI-based (Algorithm II.3); (PT) is
computationally heavy and requires substantial optimizations to be run (Section 12.3); Lastly,
the slackness function f (t) of (PT) is difficult to choose. The last point is more important that
it sounds. The slackness function guarantees that the number of episodes grows reasonably
slow (Theorem IV.6), but the theoretical guarantees are very pessimistic and are way off in
practice. Morally, this means that f (t) may be chosen aggressively small, at the risk of entering
the back-and-forth issue of Section 12.1, yet choosing f (t) small is very important to observe
sub-linear regret of exploration in practice because the guarantees are otherwise too asymptotic.

The hardness of tuning the slackness function of (PT) is produced by a common flaw of
design: We are explicitly controlling the error range of the algorithm. It is very difficult to
precisely quantify the speed at which optimistic gain of a played sub-optimal policy decreases,
hence designing the slackness function is a hard problem. In the chapter, we provide another
episode rule, the Vanishing Multiplicative condition (VM), that is implicit rather than explicit.

Important remark. In the remaining of the chapter, we write uz(t) instead of ut(z).

13.1 Optimizing (PT): the vanishing multiplicative condition

This new episode rule, despite its simplicity, was designed by reverse engineering the proof of
regret of exploration guarantees of Boone and Gaujal (2023b).

13.1.1 The return of visit counts

When investigating the experimental behavior of (PT) in Section 12.2.4, we have indirectly
observed that the behavior of confidence regions is very different at high and low visit counts
(to the right of Figure 12.2.1). At high visit counts, the optimistic estimates seem to behave
like a random walk if a nearly negligible drift. At low visit counts, the optimistic estimates are
very noisy but are pulled by a strong negative drift. At the end of the day, if sublinear regret of
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exploration is achievable with optimistic methods in the first place, it is because the confidence
region associated to a rarely visited pair evolves quickly when the number of visits increases.
Hence, waiting for relative increases of visit counts just like (DT) is actually a good idea: If the
pair z is rarely visited, its confidence region changes quickly and it is mandatory to frequently
update the current policy when z is played, and if z is visited often, its confidence region doesn’t
change much upon visiting it and the current policy may not need that many updates. The
issue of (DT) is that the visit counts of all pairs are subjected to be unbounded, hence waiting
for a visit count to double is too much. We suggest to replace (DT) by a less demanding visit
requirement. Specifically, the current episode k is ended as soon the visit count of a pair is about
to increase multiplicatively with respect to a vanishing time dependent multiplicative factor,
i.e.,

Nt(St ,π
k(St))> (1+ f (tk))Ntk

(St ,π
k(St)) (VM)

where f ∈ [0,1]N is a non-increasing vanishing function of t. The above condition will be
referred to as the f -Vanishing Multiplicative condition, or f -(VM), or even more simply (VM).
Remark that (DT) is of the form (VM) with f ≡ 1, excepted that this function is not vanishing.
This control function can be almost arbitrary among those valued in [0, 1], but as the analysis will
show, (1) f (t) = o

�

1
log(t)

�

is mandatory to get sublinear guarantees on the regret of exploration,
and (2) standard minimax regret guarantees impose f to be of order f (t) = Ω(t−1/2). Remark
that (1-2) are the same requirement than (PT). This episode rule further satisfies the following
convenient measurability property. Fixing an episode (k) and denoting τt

s := inf{t ′ > t : St ′ = s}
the reaching time to s ∈ S since t, observe that for all t ∈ {tk, . . . , tk+1}, either 1(tk+1 ≤ τt

s)
or 1(tk+1 > τ

t
s) is σ(Ht)-measurable. It means that at time t, one is able to tell whether there

exists a state that kills the episode upon its next future visit or not.

The point of (VM) is to achieve two goals at once: leave the regret guarantees unharmed
and ensure regret of exploration guarantees. The benefits of changing (DT) to (VM) in classical
EVI-based algorithms is summarized in the table below. One of the advantages of (VM) over
(PT) is that its theoretical guarantees extend to a larger range of algorithms, including KLUCRL
Filippi et al. (2010); Talebi and Maillard (2018) and UCRL2-B Fruit et al. (2020).

Algorithm Minimax regret Model dependent regret∗ Regret of exploration

UCRL2-(DT) DS
p

AT log(T ) O(log(T )) Ω(T )

UCRL2-(VM) DS
p

AT log(T ) O(log(T ) log log(T )) O(log(T ))

KLUCRL-(DT) S
p

DAT log(T ) O(log(T )) Ω(T )

KLUCRL-(VM) S
p

DAT log(T ) O(log(T ) log log(T )) O(log(T ))

UCRL2-B-(DT) S
p

DAT log2(T ) unknown Ω(T )

UCRL2-B-(VM) S
Æ

DAT log2(T ) O(log(T ) log log(T )) O(log(T ))

∗ The model dependent guarantees of (VM) requires additional technical assumptions on the model.

Table 13.1.1: Theoretical guarantees of classical algorithms with (VM).
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13.1.2 Minimax regret guarantees under (VM)

Again, the sine qua non requirement for (VM) is that the minimax regret guarantees are un-
touched. Thankfully, regret guarantees are much easier to establish than under (PT) because
the number of episodes is much easier to bound. Similarly to Section 12.2.1,

Reg(T )≤ D(M)|K (T )|+
∑

k,t

�

g∗(M (tk))− r̃k(Zt)
�

+O
�Ç

SAT log
�

T
δ

�

�

(IV.1)

where (r̃k, p̃k) is an optimistic model of πk at time tk (see Section 6.4 for more details) provided
that the confidence region holds universally in time. The number of episodes is bounded by
Proposition IV.10 below.

Proposition IV.10. The number of episodes under (VM) is bounded by:

|K (T )| ≤ SA
�

1+
2 log(T )

f (T )

�

(IV.2)

Proof. By considering a pair interrupting the maximal number of episodes, we see that

(1+ f (T ))
|K (T )|

SA −1 ≤ T.

Solve in |K (T )| and use that log(1+ x)≥ 1
2 x for x ∈ [0,1].

Corollary IV.11 (Regret guarantees). If f (T) = ω(T−
1
2 ), then the regret guarantees

of UCRL2-(VM), KLUCRL-(VM) and UCRL2B-(VM) match their (DT) equivalents, see Ta-
ble 13.1.1.

13.1.3 Regret of exploration guarantees under (VM)

We now present the main result of the chapter: providing regret of exploration guarantees for
optimistic algorithms managing episodes with (VM). Our result holds under (1) a non-degeneracy
assumption of the model, and (2) a relative interior assumption for the hidden model (see
Assumption 5) that is close in spirit to knowing the support of transitions beforehand.

Theorem IV.12 (Main result). Let M ∈M+ a non-degenerate explorative model. Consider
running an EVI-based algorithm with confidence regionM (t)≡Mδ(t)(t) as in Section 7.A.2
with δ(t) := 1

t , and assume thatM (t) satisfies Assumption 5. If the algorithm manages

episodes according to f -(VM) with f (t) = o
�

1
log(t)

�

, then there exists a constant C(M)<∞
such that:

RegExp(T )≤ C(M) log(T ) + o(log(T )).

This result can be explicitly applied to UCRL2 Auer et al. (2009), KLUCRL Filippi et al. (2010)
and UCRL2-B Fruit et al. (2020) to obtain logarithmic regret of exploration guarantees for the
variants obtained by managing episodes using (VM) rather than (DT).

The proof of Theorem IV.12 is difficult and its structure is illustrated with Figure 13.1.1. The
remaining of the chapter is dedicated to explaining the main ideas behind it. In Section 13.2.1, we
present a family of coherence properties, properties that imply logarithmic regret of exploration
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EVI-based
algorithm

Linear visits Nz(T ) =
Ω(T) on Z ∗∗(M)

Shaking effect
(Section 13.2.2)

Asymptotic regime
(Section 13.2.3)

Logarithmic visits
Nz(T) = O(log(T))

outside Z ∗∗(M)

Shrinking effect
(Section 13.2.2)

∗ Local coherence
(Section 13.2.5)

RegExp(T) =
O(log(T))

Lemma IV.13

Global coherence

Lemma IV.14 Lemma IV.15

Lemma IV.14 Lemma IV.16

(Section 13.2.5)

Lemma IV.13

Figure 13.1.1: Architecture of Regret of Exploration Analysis.

and beyond for algorithms that satisfy them. In Section 13.2.2, we explain why optimistic
algorithms enjoy coherence properties. This goes by characterizing the asymptotic visit rates of
pairs in Section 13.2.3 and explain what non-degeneracy has to do with it; In Section 13.2.3.1,
we explain why Assumption 5 is important. Among all the ideas invoked to establish coherence,
the most important step is detailed in Section 13.2.4 where we investigate a shrinking-shaking
behavior that confidence regions display, which plays a crucial role in making sub-optimal
policies cast out by the whole EVI machinery. The throughout details are very voluminous and
are deferred to appendix for the most part, excepted for the last Section 13.2.5 that connects all
the arguments together (marked node (∗) of Figure 13.1.1).

13.2 Establishing regret of exploration guarantees

13.2.1 Coherent algorithms

Our proof strategy is valid for all EVI-based algorithms (Algorithm II.2) that use a confidence
region M (t) as discussed in Section 6.3.2. The regret of exploration is upper-bounded by
estimating the number of times it is expected to play a sub-optimal policy over time intervals
[tk, tk + T) starting at exploration times tk, then by deducing that the regret is small on the
same time period. This is achieved via Lemma IV.13 below, that controls the likely range of the
regret under a stability condition specified in Definition IV.5, that we refer to as coherence.

Definition IV.5 (Coherence). We say that an algorithm is (F,τ, T,ϕ)-coherent if F ≡
(Ft : t ≥ 1) is an adapted sequence of events, τ a stopping time, T ≥ 1 is a scalar and
ϕ : N→ [0,∞) is a function such that, for all t ∈ {τ, . . . ,τ+ T − 1},

Ft ⊆
§

gπt (St)< g∗(St)⇒∃z ≡ (s, a) ∈ Reach(πt , St) :
�

Nz(t)− Nz(τ)≤ ϕ(τ)
and gπt (s)< g∗(s)

�ª

where z ≡ (s, a) ∈ Reach(πt , St) stands for π(a|s)> 0 and PπSt
(τs <∞)> 0.

Formally, coherence states that over [τ,τ+ T) and under a good event Ft , if the current
policy πt is sub-optimal from the current state, then there exists a sub-sampled pair (relatively
to ϕ(τ)) which is reachable with positive probability from the current state St with the current
policy πt and from which the current policy is sub-optimal. Morally, coherence states that the
iteration of a sub-optimal policy is linked to a lack of information that has positive probability



Chapter 13. The Vanishing Multiplicative Condition (VM) 221

to be recovered from by iterating that policy only. That lack of information is quantified by a
budget ϕ(τ). The purpose of the coherence property is its link with local regret guarantees, as
shown by Lemma IV.13 below. However, the coherence property may only be conveniently used
if the episodes of the algorithm are regenerative, meaning that episodes may only end if the
current state has already been visited during the episode. This property makes sure that the
sub-sampled state-action pair, of which coherence ensures the existence, is reached and visited
during the episode with positive probability.

Definition IV.6 (Regenerative episodes). We say that the episodes of an algorithm are
regenerative if, for all k ≥ 1, there exists t ∈ [tk, tk+1) such that St = Stk+1

.

Lemma IV.13 (Coherence and local regret). Assume that the underlying model M is non-
degenerate (Definition IV.3). If the algorithm is (F,τ, T,ϕ)-coherent and has regenerative
episodes, then there exist model dependent constants C1, C2, C3, C4 > 0 such that:

∀x ≥ 0, P

�

Reg(τ,τ+ T )≥ x + C4ϕ(τ) and
τ+T−1
⋂

t=τ
Ft

�

≤ C1T C3 exp
�

−
x
C2

�

.

More specifically, C1, C2, C3, C4 only depend on M and are independent of F,τ, T and ϕ.

Using the shorthand Fτ:τ+T :=
⋂τ+T−1

t=τ Ft , this means that on a good event Fτ:τ+T , the local
regret Reg(τ,τ+ T ) has sub-exponential tails. The above result can also be written in the form
P(Reg(τ,τ+ T )≥ C1 + C4ϕ(τ) + (ηC2 + C3) log(T ), Fτ:τ+T )≤ T−η where η > 0 is arbitrary.

This result is invoked at several places in the analysis in intrinsically different scenarios. It
plays a central role in the instance dependent regret analysis (done in expectation), but also in
showing that non optimal pairs (Z \Z ∗∗(M)) are visited at most logarithmically often (almost
surely). Perhaps more importantly, it plays the last key part in the proof of regret of exploration
guarantees, as shown by Figure 13.1.1. The idea is simple: Applying Lemma IV.13 with η= 1,
we get E[Reg(τ,τ+ T )|Fτ:τ+T ] = O(log(T )). We then typically choose τ as an exploration time
of the process and F as a high probability concentration event whose construction is algorithm
specific, and that depends on how coherence is established. This last part is the subject of the
next section.

The proof of Lemma IV.13 is difficult and deferred to Section 13.A.

13.2.2 The shrinking/shaking behavior of confidence sets and coherence

In this part, we explain why EVI-based algorithms managing episodes with (VM) are coherent.
Recall that the coherence property states that if a sub-optimal policy is being used, then (∗) a
reachable pair has been sub-sampled and (∗∗) it is sub-sampled within O(log(T )) range. While
(∗) leads to making assumptions on the space of models on which the algorithm runs, (∗∗) is
linked to a shrinking-shaking behavior of confidence sets that leads to non-degeneracy.

13.2.3 Asymptotic regime of EVI-based algorithms, (VM) and non-degeneracy

The result below describes the almost-sure asymptotic regime of EVI-based algorithms managing
episodes with (VM). Up to the non-degeneracy of the underlying model, the visit counts can
be split into two regimes: Nz(t) grows linearly with t for z ∈ Z ∗∗(M) while Nz(t) grows sub-
logarithmically for z /∈ Z ∗∗(M) (including Z ∗∗(M) \ Z ∗(M) in particular). Both results are
mandatory steps in the proof of regret of exploration guarantees, see Figure 13.1.1.
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Lemma IV.14 (Almost-sure asymptotic regime). Let M ∈ M a non-degenerate model.
Assume that the algorithm running is EVI-based with a confidence regionM (t)≡Mδ(t)(t)
as given by Section 7.A.2 with δ(t) := 1

t , managing episodes with f -(VM) with arbitrary
f > 0. There exists λ > 0 s.t.:

∀z /∈ Z∗∗(M), PM(∃T,∀t ≥ T : Nz(t)< λ log(t)) = 1, and

∀z ∈ Z∗∗(M), PM
�

∃T,∀t ≥ T : Nz(t)>
1
λ t
�

= 1.

Since the result holds for arbitrary f , it holds in particular for (DT). This is not much of
a surprise, since UCRL2 is known to have model dependent logarithmic regret. This result is
rather remarkable for (VM) since the number of episodes can be much larger than logarithmic.
However, (DT) and (VM) differ in the amount of times a sub-sampled pair can be visited during
an episode. Indeed, for z ∈ Z such that PM(∃T,∀t ≥ T : Nz(t)< λ log(t)) = 1, we see that:

Nz(tk+1)≤ ⌊(1+ f (tk))Nz(tk)⌋+ 1= Nz(tk) + 1+ ⌊λ f (tk) log(tk)⌋. (IV.3)

For f (t) = o
�

1
log(t)

�

, we have ⌊λ f (tk) log(tk)⌋ = 0 provided that tk is large enough, meaning
that sub-sampled pairs can be visited at most once per episode in the long run. It means that
under (VM), algorithms almost instantly refresh their policies when sub-optimal pairs are visited.

13.2.3.1 Recurrence or known supports

The first statement (∗), which is about the reachability of sub-sampled pairs, is not guaranteed to
hold if we run an EVI-based algorithm on an arbitrary model. The issue lies in the fact that the
high optimistic gain of a policy may be due states that are unreachable under the optimistically
optimal policy. This is because in the confidence region M (t), there may be models with a
richer transition structure than the true hidden model M . It is avoided using Assumption 5.

Assumption 1. For all t ≥ 1 and z ∈ Z , p(z) is interior to Pt(z), i.e., p̃(z)≪ p(z) for all
p̃(z) ∈ Pt(z).

Assumption 5 is morally equivalent to stating that the support of the transitions of M are
known in advance and we conjecture this assumption is mandatory without a significant rework
of EVI. Reworking EVI however is not the subject of this chapter. Under Assumption 5, the
optimistic gain of a policy π from a fixed state s only depends on Rz(t),Pz(t) for pairs z that
are reachable from s under π on M . This echoes the reachability requirement of sub-sampled
pairs in (∗).

13.2.4 Shrinking and shaking confidence sets

The phenomenon presented in this section is an abstract view of what has been observed in the
right part of Figure 12.2.1.

The second statement (∗∗) of coherence is that if Nz(t)− Nz(τ) is large enough, then EVI
will reject sub-optimal policies, typically because their optimistic gain drops. This is achieved by
showing that confidence regions collapse with high probability on sub-sampled pairs when their
visit counts increase; Indeed, if the confidence region associated to a policy’s kernel and reward
vector are smaller, then so is the optimistic gain computed by EVI. The fact that confidence
regions shrink quickly enough is not obvious and is a result of the O(log(T)) visit rate of sub-
optimal transitions, which is thankfully guaranteed by the characterization of the asymptotic
regime given by Lemma IV.14. Then, the fact that the shrinking behavior of confidence regions
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implies a decrease of the optimistic gain is not obvious either; But this last part is highly technical,
hence completely deferred to the appendix.

Ns,a(t) = o(log(t))
(Shrinking, Lemma IV.15)

Ns,a(t) = Θ(log(t))
(Shrinking, Lemma IV.15)

Ns,a(t) = Ω(log(t))
(Shaking, Lemma IV.16)

Figure 13.2.1: An artist view of the shrinking/shaking behavior of the confidence regions
Qs,a(t) as the number of new samples Ns,a(t ′)− Ns,a(t) ≪ Ns,a(t) increases (from dashed to
solid line).

Formally, the shrinking effect is formalized with Lemma IV.15 below.

Lemma IV.15 (Shrinking effect). Let (tk(i)) the enumeration of exploration episodes, and
let T ≥ 1. Fix λ, z ∈ Z > 0. For all δ > 0, we can find ε, m, C > 0 such that:

kernel : P

�

Ftk(i)
,

�

∃t ∈ [tk(i), tk(i) + T] :
Pz(t) ̸⊆ Pz(tk(i)−1)

and Nz(t)> Nz(tk(i)) + C log
�

T
δ

�

��

≤ δ,

reward : P

�

Ftk(i)
,

�

∃t ∈ [tk(i), tk(i) + T] :
supRz(t)> supRz(tk(i)−1)−

Nz(t)−Nz(tk(i))
C log(tk(i))

and Nz(t)> Nz(tk(i)) + C log
�

T
δ

�

��

≤ δ

with Ftk(i)
:= (Nz(tk(i))<

1
λ log(tk(i)), |r̂z(tk(i)−1)− rz|< ε,∥p̂z(tk(i)−1)− pz∥< ε, tk(i) > m).

Remark that the shrinking is shown to be large on kernels, and strict on rewards. The
good event Ftk(i)

is asymptotically almost sure. Indeed, (Nz(tk(i)) <
1
λ log(tk(i))) refers to the

logarithmic visit rates provided by Lemma IV.14, the concentration events (|r̂z(tk(i)−1)− rz|<
ε,∥p̂z(tk(i)−1)− pz∥< ε) hold because of the law of large numbers, and (tk(i) > m) is just stating
that tk(i) is large enough. The careful reader will remark that in the events above, tk(i) and
tk(i)−1 co-exist: The evolution of visit counts is measured relatively to their status at time tk(i),
while the evolution of confidence regions is measured relatively to their status at time tk(i)−1.
This subtlety is technical, and comes from the fact that our goal is to bound the regret starting
from tk(i), yet the confidence regions are better behaved at time tk(i)−1 than at time tk(i).

A dual result holds for the confidence of highly visited pairs, showing that the associated
confidence regions barely change on small time windows. This is the shaking effect, where the
center of the confidence region moves faster than the region’s diameter decreases.

Lemma IV.16 (Shaking effect). Let (tk(i)) the enumeration of exploration episodes, and let
T ≥ 1. Fix λ, z ∈ Z and for two sets U ,V ⊆ Rn, denote dH(U ,V ) the Hausdorff distance
induced by the one-norm. We can find c, m> 0 such that:

(kernels) Ftk(i)
⊆
�

∀t ∈ [tk(i), tk(i) + T] : dH(Pz(t),Pz(tk(i)−1))≤
Ç

c log(t)
t

�

,
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(rewards) Ftk(i)
⊆
�

∀t ∈ [tk(i), tk(i) + T] : dH(Rz(t),Rz(tk(i)−1))≤
Ç

c log(t)
t

�

where Ftk(i)
:= (Nz(tk(i)−1)> λtk(i)−1, tk(i) > m)∩ (∀t ∈ [tk(i)−1, tk(i)], M ∈Mδ(t)(t)).

13.2.5 Establishing coherence and proving Theorem IV.12

Based on the shrinking and shaking effect discussed upstream, we show that (VM) guarantees
local coherence properties that, once combined with Lemma IV.14, become regret of exploration
guarantees. The exact coherence property is detailed in Lemma IV.17 below. Once Lemma IV.17
is established, Theorem IV.12 follows instantly.

Lemma IV.17. Let M ∈ M+ a non-degenerate explorative model. Consider running an
EVI-based algorithm with confidence region M (t) ≡ Mδ(t)(t) as in Section 7.A.2 with
δ(t) := 1

t , and assume that M (t) satisfies Assumption 5. Assume that the algorithm

manages episodes according to f -(VM) with f (t) = o
�

1
log(t)

�

. Let (tk(i)) the enumeration of
exploration episodes. Then, there exists a constant C(M)> 0 such that, for all T ≥ 1 and
δ > 0, there is an adapted sequence of events (Et) and a function ϕ : N→ R such that:

(1) For all i ≥ 1, the algorithm is (Et , tk(i), T,ϕ)-coherent;

(2) P(
⋃tk(i)+T−1

t=tk(i)
Ec

t )≤ δ+ o(1) when i→∞;

(3) ϕ(tk(i))≤ 1+ C log( T
δ ) when i→∞.

Proof. By correctness of the confidence region, P(∃T,∀t ≥ T : ∀π, g∗(π,M (t))≥ g(π, M)) = 1,
hence a policy with optimistic gain less than g∗(M) won’t be optimistically optimal on this
event, so won’t be the result of EVI. Considering an exploration time tk(i), we know that the
policy of the previous episode was optimal in M , hence g∗(M (tk(i)−1)) = gπ

∗
(M (tk(i)−1)) where

π∗ ∈ Π∗(M). By Assumption 5, we know that g∗(M (tk(i)−1)) only depends on Rz(tk(i)−1) and
Pz(tk(i)−1) for z ∈ Z ∗∗(M) where Nz(tk(i)−1)≥ λtk(i)−1 by Lemma IV.14. Using Theorem II.1 to
quantify the sensibility of the gain to kernel and reward perturbations, we get that

g∗(M)≤ g∗(M (tk(i)−1))≤ g∗(M) +O

 
√

√

√

log(tk(i)−1)

tk(i)−1

!

(IV.4)

holds with probability one when i→∞.
Fix t ∈ {tk(i), . . . , tk(i)+T−1}. Recall that a policy that EVI outputs must have optimistic gain

with span zero. Let π output by EVI at time t ′ ∈ [tk(i), t], and assume that (1) π is sub-optimal
in M from St , so that there exists s ∈ S such that gπ(s; M)< g∗(s; M) and s is reachable from
St under π; and (2) that Nz(t)> Nz(tk(i)) + C log(T/δ) for all z ∈ Z , where C is given by the
shrinking-shaking Lemmas IV.15 and IV.16. Without loss of generality, we can assume that s
is recurrent under π on M and let Z ′ ⊆ Z the associated recurrent component of pairs. By
Assumption 5, we see that gπ(s;M (t)) only depends on data on Z ′. Since π was output by EVI,
gπ(M (t)) only depends on data on Z ′. Let Z ′− := Z ′ \ Z ∗∗(M) which is non-empty because
gπ(s; M)< g∗(s; M), and let Z ′+ :=Z ′ ∩Z ∗∗(M). We have:

gπ(M (t)) = sup
r̃∈Rπ(t)

sup
p̃∈Pπ(t)

g(r, p) = sup
r̃∈RZ′ (t)

sup
p̃∈PZ′ (t)

g(r̃, p̃)

(†)
≤ sup

r̃∈RZ′ (tk(i)−1)
sup

p̃∈PZ′ (tk(i)−1)
g
�

r̃ − log(T/δ)
log(tk(i))

· eZ ′− +
È

c log(tk(i))
tk(i)

· eZ ′+ , p̃
�



Chapter 13. The Vanishing Multiplicative Condition (VM) 225

(‡)
≤ gπ(M (tk(i)−1)) +

Ç

c log(t)
t −η(M ,π) log(T/δ)

log(tk(i))

∼ gπ(M (tk(i)−1))−
η(M ,π) log(T/δ)

log(tk(i))

(IV.4)
≤ g∗(M) +O

�È

log(tk(i)−1)
tk(i)−1

�

− η(M ,π) log(T/δ)
log(tk(i))

< g∗(M)

where the last inequality hold for tk(i) large enough. In the above, (†) holds on the events
specified by the shrinking-shaking behavior of confidence regions, see Lemmas IV.15 and IV.16;
and (‡) is a technical result on exit probabilities, stating that even though we take a supremum
on p̃ ∈ PZ ′(tk(i)− 1), the choice of p̃ will put positive probability mass η(M ,π)> 0 on Z ′− in its
associated invariant probability measures.

This is justified as follows. On Z ′+ ≡Z
′ ∩Z ∗∗(M), the number of visits is ω(tk(i)−1) hence

Pz(tk(i)−1) is nearly equal to {pz} for all z ∈ Z ′+; In fact, for all fixed ε > 0, we can assume that
Pz(tk(i)−1) ⊆ {p̃z : ∥p̃z − pz∥1 < ε} with overwhelming probability provided that tk(i)−1 is large
enough. Let (r̃π, p̃π) ∈Mπ(tk(i)−1) an optimistic model of π (see Corollary II.12) and let µ̃π

the empirical invariant measure of π starting from s under the optimistic model. Using that
sp(g(r̃π, p̃π)) = 0, we assume that p̃π has a single recurrent class Z ′′ up to restricting to that
class. By correctness of the confidence region, a policy output by EVI has optimistic gain higher
than g∗(M) and since the optimistic model is nearly equal to the true model on Z ′+, we deduce
that Z ′′ must contain elements of Z ′− (otherwise π is optimal in M). We see that under p̃π, for
every element of Z ′′ ∩Z ′+ there must be a path to an element of Z ′′ ∩Z ′− of length at most
|S | − 1 and probability at least cε(M) := (minz∈Z ′+ min{p(s|z) > 0 : s ∈ S } − ε)|S |−1, which
is well defined and positive for ε > 0 small enough. So there must be z ∈ Z ′′ ∩Z ′− such that
µ̃(z) ≥ |S |−1cε(M). Set η(M ,π) := 1

2 c0(M). For ε small enough and on mild concentration
events, we have:

g
�

r̃π − log(T/δ)
log(tk(i))

· eZ ′− +
È

c log(tk(i))
tk(i)

· eZ ′+ , , p̃π
�

≤ gπ(M (tk(i)−1)) +
Ç

c log(t)
t −η(M ,π) log(T/δ)

log(tk(i))
.

This justifies (‡).
Overall, we have gπ(M (t)) < g∗(M) ≤ g∗(M (t)) on the event Et :=

⋂

z∈Z Ez
t with Ez

t
given by:










�

F z
tk(i)

,

�

Pz(t) ⊆ Pz(tk(i)−1)
or Nz(t)≤ Nz(tk(i)) + C log

�

T
δ

�

�

,

�

supRz(t)≤ supRz(tk(i)−1)−
Nz(t)−Nz(tk(i))

C log(tk(i))

or Nz(t)≤ Nz(tk(i)) + C log
�

T
δ

�

��

if z /∈ Z ∗∗(M)
�

F z
tk(i)

, dH(Pz(t),Pz(tk(i)−1))≤
Ç

c log(t)
t , dH(Rz(t),Rz(tk(i)−1))

�

if z ∈ Z ∗∗(M)

where, for z /∈ Z ∗∗(M), F z
tk(i)

is the event appearing in the shrinking effect lemma (Lemma IV.15),
and for z ∈ Z ∗∗(M), F z

tk(i)
is the event appearing in the shaking effect lemma (Lemma IV.16);

In both cases, we have P(∃i,∀ j ≥ i : F z
tk( j)
) = 1 provided that the rate λ > 0 in the definition

of F z
tk(i)

is chosen accordingly to the asymptotic regime of the algorithm (Lemma IV.14). We
deduce that on Et , π will be rejected as soon as (VM) triggers, because its optimistic gain is
no more optimistically optimal. By (IV.3), as soon as a pair z /∈ Z ∗∗(M) is about to be visited
for the second time in the episode, the episode will stop. We therefore have shown that while
gπ(St ; M)< g∗(St ; M) and on Et , there exists z ≡ (s, a) that is reachable from St under π such
that Nz(t)< Nz(tk) + 1+ C log(T/δ) and gπ(s; M)< g∗(s; M).

Accordingly, we have shown that the algorithm is (E, tk(i), T,ϕ)-coherent, with P(∃t ∈
[tk(i), tk(i) + T] : Ec

t )≤ δ+ o(1) when i→∞ and ϕ(t) = 1+ C log(T/δ).

Proof of Theorem IV.12. Use the coherence property of Lemma IV.17 with δ = 1
T and apply

Lemma IV.13. We obtain:

(−) := lim sup
i→∞

P
�

Reg(tk(i), tk(i) + T )≥ x + C4ϕ(tk(i))
�
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≤ limsup
i→∞

¨

P

�

Reg(tk(i), tk(i) + T )≥ x + C4ϕ(tk(i)),
tk(i)+T−1
⋂

t=tk(i)

Et

�

+ P

�tk(i)+T−1
⋃

t=tk(i)

Ec
t

�«

≤ exp
�

−
x
C2
+ C3 log(T ) + log(C1)

�

+
1
T

which is bounded by 2
T for x ≥ C2(1 + C3) log(T) + C2 log(C1), where C1, C2, C3, C4 are the

constants provided by Lemma IV.13. Using that lim supi→∞ϕ(tk(i))≤ 1+ 2C log(T ) and setting
ψ(T ) := (C2(1+ C3) + 2C4C) log(T ) + C2 log(C1) + C4, we obtain:

RegExp(T )≤ limsup
i→∞

�

ψ(T ) + T · P
�

Reg(tk(i), tk(i) + T )≥ψ(T )
�	

≤ψ(T ) + 2. (IV.5)

This concludes the proof of Theorem IV.12.

13.3 Model dependent regret via coherence

In the proof of the regret of exploration guarantees, Lemma IV.13 is used twice and two different
coherence properties are invoked. Coherence is first used in a global form to derive the almost
sure asymptotic regime. Indeed, the first step of the proof (see Section 13.B) consists in showing
that the algorithm is ((Ft), ⌈log(T)⌉, T,ϕ)-coherent for ϕ(⌈log(T)⌉) = O(log(T)) where the
sequence of events (Ft) is asymptotically almost sure, i.e., P(∃T,∀t ≥ T : Ft) = 1. Then,
coherence is used in a local form to derive the regret of exploration guarantees. Indeed, the
whole point of Section 13.2.5 is to show that the algorithm is (E, tk(i), T,ϕ)-coherent where
(tk(i)) is the sequence of exploration episodes, P(∃T,∀t ≥ T : Et) = 1 and ϕ(tk(i)) = O(log(T )).

In this section, we show a third application of coherence properties: model dependent regret
guarantees.

13.3.1 General model dependent regret bound via coherence

We provide first a general result.

Theorem IV.18. Consider an episodic algorithm with (1) regenerative episodes and (2) such
that there exists an adapted sequence of events (Ft) with P(

⋃∞
t=T F c

t ) = O( 1
T ) such that the

algorithm is ((Ft), T, T,ϕ)-coherent for all T ≥ 1. Then, for all non-degenerate model M,

EM[Reg(T )] = O

 

⌈log2(T )⌉−1
∑

m=0

ϕ(2m)

!

+O(log(T )) (IV.6)

when T →∞.

Proof. Let n := ⌈log2(T )⌉. For all m≤ n, the algorithm is (F, 2m, 2m,ϕ)-coherent, has regenera-
tive episodes, and M is non-degenerate, so we invoke Lemma IV.13 and obtain, for x ≥ 0,

(−) := P
�

Reg(2m, 2m+1)≥ x + C4ϕ(2
n)
�

≤ P

�

Reg(2m, 2m+1)≥ x + C4ϕ(2
n),

2m+1−1
⋂

t=2m

Ft

�

+ P

� ∞
⋃

t=2m

F c
t

�

≤ exp
�

−
x
C2
+ C3m log(2) + log(C1)

�

+O
�

2−m
�
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where C1, C2, C3, C4 are model dependent constants. For x ≥ C2(C1+(1+C3) log(2)m), the RHS
is O(2−m). In other words, E[Reg(2m, 2m+1)] = O(ϕ(2m)). Summing for m≥ 1, we get:

E[Reg(T )] :=
n−1
∑

m=0

E[Reg(2m, 2m+1)] = O

�

n−1
∑

m=0

ϕ(2m) + 1

�

= O

 

⌈log2(T )⌉−1
∑

m=0

ϕ(2m)

!

+O(log(T )).

This is the intended result.

A few comments are in order. First, the requirement P(
⋃∞

t=T F c
t ) = O( 1

T ) is slightly overshoot
and can be weakened depending on the asymptotic properties of ϕ and the desired bound.
Second, the proof technique can be directly adapted to obtain bounds in probability rather
than in expectation. Last, but perhaps the most important, is that this bound only holds for
non-degenerate models (Definition IV.3). While every model can be made non-degenerate up
to smooth reward perturbations, non-degenerate models are a bit special, because the weakly
optimal pair is unique from every state (unique Bellman optimal policy), and Z ∗∗(M) has a
unique communicating component (unique gain optimal component), see Boone and Gaujal
(2023a). The proof of Lemma IV.13, which is key here, inevitably relies on non-degeneracy. Yet,
degenerate models are easy to find. Figure 12.1.1 is one simple example and is a good starting
point to understand why coherence and regenerative episodes are insufficient to provide regret
bounds on degenerate models.

13.3.2 A model dependent regret bound for (VM)

Theorem IV.18 is applied to EVI-based algorithms relying on (VM) by showing that such algo-
rithms satisfy a ((Ft), T, T,ϕ)-coherence property with a budget function ϕ(T) = O(log(T)),
leading to O(log(T ) log log(T )) regret bounds.

Theorem IV.19. Let M a non-degenerate model. Consider running an EVI-based algorithm
with confidence regionM (t) ≡Mδ(t)(t) as in Section 7.A.2 with δ(t) := 1

t , and assume
thatM (t) satisfies Assumption 5. If the algorithm manages episodes according to f -(VM)
with f > 0, then

EM[Reg(T )] = O(log(T ) log log(T )). (IV.7)

Proof. Consider the good events Et := (M ∈M (t)) and Ft :=
⋂t

t ′=(t−|Z |)/2 Et .

We know by design P(
⋃∞

t=T Ec
t ) = O( 1

T ), see Section 6.3.2, so P(
⋃∞

t=T F c
t ) = O( 1

T ) as well.
We show that the algorithm is (Ft , T, T,ϕ)-coherent for ϕ(T ) = O(log(T )). The result will then
follow by Theorem IV.18 using that

∫

log(x)d x = x log x − x .
For all ε > 0, it is easy to show that if C ≡ Cε > 0 is large enough with respect to ε, whether

the confidence region is built out of ℓ1-balls, KL-semi-balls or out of Bernstein’s inequality, if
Nz(t)≥ C log(t), we have:

Pz(t) ⊆
�

p̃z : ∥p̃z − p̂z(t)∥1 <
1
2ε
	

and Rz(t) ⊆
�

r̃z : ∥r̃z − r̂z(t)∥∞ <
1
2ε
	

(IV.8)

Introduce the gain gap∆g :=min{∥gπ(M)−g∗(M)∥∞ : π /∈ Π∗(M)}> 0. Whenever M ∈M (t),
we have g∗(M)≤ g∗(M (t)). Let π a policy output by EVI at time t and assume that Nz(t)≥
C log(t) for all z ∈ Z . It has optimistic bias with span at most D(M), hence by Theorem II.1, we
have:

∥gπ(Mt)− gπ(M)∥∞ ≤ ε
�

1+ 1
2 D(M)

�

(IV.9)

yet gπ(Mt)≥ g∗(Mt)≥ g∗(M). So, provided that ε(1+ 1
2 D(M))<∆g , π necessarily achieves

optimal gain. We assume from now on that ε(1+ 1
2 D(M))<∆g is true.
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Now, assume that πt is such that gπt (St , M) < g∗(St , M). By construction of EVI-based
algorithms, πt is the output of EVI for tk with t ∈ [tk, tk+1), hence is the optimistically optimal
policy at time tk. By assumption gπtk (St ; M)< g∗(St ; M), so assuming that

Etk
≡ (M ∈M (tk)) (IV.10)

holds, we deduce from the previous argument that there must be z ∈ Z such that Nz(tk) <
C log(tk). Since gπtk (St , M)< g∗(St , M), Reach(πtk

, St) must contain a recurrent component of
πtk

on which the achieved gain is sub-optimal. Pick one, denoted Z ′. Thanks to Assumption 5,
the optimistic gain of gπtk (s,M (tk)) for s ∈ S (Z ′) only depends on pairs among Reach(πtk

, s)
and yet gπtk (s;M (tk)) ≥ g∗(s, M). So there must be a sub-sampled pair in Z ′, i.e., there
exists (s, a) ∈ Z ′ such that Ns,a(tk) < C log(tk); This pair is reachable from St under πt and
gπt (s; M)< g∗(s; M) by construction of Z ′. Last, but not least, is that by construction of (VM),
we have t ≤ 2tk + |Z | and Ns,a(t)≤ 2Ns,a(tk) + 1. So, on the event Ft :=

⋂t
t ′=(t−|Z |)/2 Et ,

∃z ≡ (s, a) ∈ Reach(πt , St) : Nz(t)≤ 2C log(t) + 1 and gπt (s; M)< g∗(s; M). (IV.11)

Setting ϕ(t) := 2C log(2t) + 1, we have shown that the algorithm is ((Ft), T, T,ϕ)-coherent. We
have ϕ(T ) = O(log(T )) and P(

⋃∞
t=T F c

t ) = O( 1
T ). Conclude by applying Theorem IV.18.

The result is remarkable in that f is basically arbitrary. It allows for f (t) decreasing arbitrarily
fast, hence for linearly many episodes, meaning that EVI-based algorithms can nearly be episode-
less on non-degenerate models, at the expense of minimax guarantees (see Corollary IV.11). This
remark is to be combined with the observation that EVI-based algorithm cannot be episode-less
on degenerate models in general. This was discussed in Section 12.1 following an example from
Ortner (2010). In tandem, this indicates that coherence alone cannot provide regret guarantees
beyond non degenerate models. If the model dependent regret guarantees are obtained “for
free” from coherence, extending such guarantees to degenerate models would require a different
approach and most likely assumptions on the slackness function f .

From a high level viewpoint, we see that the proof of Theorem IV.19 can be generalized
to any EVI-based algorithm with (1) not too long episodes, e.g., dominated by (DT) and
(2) regenerative episodes. It is for instance directly applicable to (PT). Up to minor modifications
of the proof, it can be adapted to PMEVI-based algorithms.

The extra log log(T ) is perhaps removable, but I have no proof direction in that matter.

13.4 Comments about (PT)

In Section 12.2.3, we have claimed that the present chapter would provide a technique to show
that the performance test has sublinear regret of exploration. This technique is the coherence
framework presented in Section 13.2, and consists in showing that (RPT) has consistency
properties that are similar to (VM). The shrinking-shaking results (Lemmas IV.15 and IV.16) are
general and hold similarly. However, one has to adapt the properties on the asymptotic regime
(Lemma IV.14) to (RPT). This is nonetheless done similarly, because (VM) and (RPT) have very
similar local and global almost-sure regret analysis.

For the asymptotic regime of (RPT), we follow the argument used in (VM) in Section 13.B.
(1) By optimism, the algorithm only plays policies with optimistic gain larger than g∗(M). But
(2) there exists a constant C > 0 such that if every z /∈ Z ∗∗(M) has been visited at least C log(T )
times, the optimistic gain of every sub-optimal policy is lower than g∗(M). Combining (1) and
(2) provides the coherence property that is used to derive the asymptotic regime of (RPT).

To adapt the local coherence property of (VM) established Section 13.2.5 to (RPT), remark
that this property is obtained by showing that if sub-optimal pairs are visited enough in [τ,τ+T ),
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then the optimistic gain of sub-optimal policies goes below g∗(M) hence at the next episode
update, such policies won’t be picked again. This argument is however directly applicable to
(RPT) as well. Almost by definition of (RPT) in fact. Therefore, the local coherence properties of
(VM) and (RPT) are similar and both episode rules guarantee logarithmic regret of exploration
for the same reasons.

The fact that the analysis of (VM) is almost directly applicable to (RPT) suggests that the
two episode rules are perhaps instances of more general rule; Actually, the slackness function
of (RPT) and the vanishing multiplicative factor of (VM) must satisfy the same conditions for
minimax and regret of exploration guarantees! Nonetheless, the advantages of (VM) over (RPT)
are that (VM) has minimax regret guarantees that are much easier to establish and computational
advantages. With (RPT), optimistic gains must be monitored at all time while (VM) only updates
optimistic gains when there is a chance that the optimistic policy changed.

13.5 Future directions

In the three previous chapters, we pointed the bad local behavior of EVI-based methods relying
on the doubling trick and suggested a way to improve them. We have introduced two new
episodes rules (PT) and (VM) that can be used to better manage episodes. To quantify the
superiority of them over (DT), we introduced a new learning metric, the regret of exploration,
shown that algorithms using (DT) have linear regret of exploration while (PT) and (VM) have
logarithmic regret of exploration under technical assumptions on the underlying model.

A natural question is whether these assumptions (Assumption 5) may be dropped. This is not
clear for reasons pointed out by (Lattimore and Szepesvári, 2020, §25.2) in their section entitled
“Clouds Looming for Optimism.” The policy-wise optimism of EVI-based makes policy played
accordingly to their highest plausible gain. Sub-optimal policies are played under optimism
because of a lack of information, but is playing the optimistic policy the best way to acquire
information? In linear bandits for instance, this is not the case (Lattimore and Szepesvári,
2020, §25); And the behavior of EVI-based algorithms, that episodically play fixed deterministic
policies, are in design miles away from the randomized nature of exploration described by
the model dependent lower bound (Theorem III.5). In practice, when one takes a look at the
optimistic models (Corollary II.12) produced by EVI, one sees that they systematically pick
p̃ that does not satisfy p̃ ≪ p when the confidence region allows it. It means that optimism
tends to increase the set of recurrent states of policies, hence the optimistic policy π may be
produced because of a lack of information on a pair that is not reachable under π. Remark that
this is exactly the kind of behavior that coherence (Definition IV.5) requires to avoid. EVI-based
algorithms have no protection against this nasty behavior, that they will display by design. The
reason why they don’t overcommit in iterating a policy π to overcome a lack of information on
a region Z ′ ⊆ Z that is not reachable using that policy, is that by iterating π, the reaching time
to Z ′ inMπ(t) explodes and eventually becomes larger than the diameter, hence π cannot be
output by EVI anymore.

Another interesting direction, yet overwhelmingly technical perhaps, is to extend these regret
of exploration of PMEVI-based algorithms. The analysis would have to quantify the evolution
of the bias confidence region used by PMEVI (Chapter 7) over time. It probably also exhibits
a shrinking-shaking behavior that would have to be quantified, and that would also further
accelerate the rejection of sub-optimal policies, in theory at least. A genuine yet pertinent
question is whether the regret of exploration of algorithms outside of the optimistic framework
can be investigated. For instance, what can be said about Bayesian algorithms (PSRL Osband
et al. (2013), TSDE Ouyang et al. (2017) or Optimistic PSRL Agrawal and Jia (2023))?
Model dependent algorithms could be also considered, such as IMED-RL Pesquerel and Maillard
(2022), IMED-KD Saber et al. (2024) or even ECoE (Chapter 10). Overall, the question of the
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regret of exploration captures all algorithms in the existing literature.
Talking about model dependent algorithms, comes the question of the model dependent

guarantees of EVI-based algorithms relying on (PT) or (VM). For instance, the original works
of UCRL2 Auer et al. (2009) and KLUCRL Filippi et al. (2010) provides model dependent
bound of these algorithms of order O(log(T)). Via coherence again, Theorem IV.19 provides
a partial answer, proving that (VM) provides guarantees of order O(log(T ) log log(T )) under a
non-degeneracy assumption over the underlying model. Beyond that setting, the question of
the model dependent regret guarantees of (PT) and (VM) are not easy, because contrary to the
minimax guarantees, the proof techniques of the original (DT) cannot be borrowed directly. I
leave a conjecture below.

Conjecture. UCRL2-(VM) has model dependent O(log(T)/ f (T)) in general; and
O(log(T )) if the underlying model is non-degenerate (Definition IV.3).

I believe however that the model dependent guarantees of EVI-based methods are not a
good direction to investigate, because I believe that policy-wise optimism is different of nature
from what the lower bound (Theorem III.5) says we should do.

Another interesting direction is to extend the local regret guarantees beyond exploration
times. For instance, can supt→∞ E[Reg(t, t + T)] grow sublinearly with T? Why did we even
focus on exploration times in the first place? This direction is actually investigated in the next
and last Chapter 14. There is a reason why the local regret guarantees of EVI-based methods
stick to exploration times, and this is all the subject of Chapter 14.



Appendix of Chapter 13

In this appendix, we provide the details to the coherence framework described in Section 13.1.2
and prove Theorem IV.12. Below is a map of the proof.

EVI-based
algorithm

Linear visits Nz(T ) =
Ω(T) on Z ∗∗(M)

Shaking effect
(Section 13.2.2)

Asymptotic regime
(Section 13.2.3)

Logarithmic visits
Nz(T) = O(log(T))

outside Z ∗∗(M)

Shrinking effect
(Section 13.2.2)

∗ Local coherence
(Section 13.2.5)

RegExp(T) =
O(log(T))

Lemma IV.13

Global coherence

Lemma IV.14 Lemma IV.15

Lemma IV.14 Lemma IV.16

(Section 13.2.5)

Lemma IV.13

The map is reported throughout to track where we are in the proof.

13.A The coherence lemma: Proof of Lemma IV.13

EVI-based
algorithm

Linear visits Nz(T ) =
Ω(T) on Z ∗∗(M)

Shaking effect
(Section 13.2.2)

Asymptotic regime
(Section 13.2.3)

Logarithmic visits
Nz(T) = O(log(T))

outside Z ∗∗(M)

Shrinking effect
(Section 13.2.2)

∗ Local coherence
(Section 13.2.5)

RegExp(T) =
O(log(T))

Lemma IV.13

Global coherence

Lemma IV.14 Lemma IV.15

Lemma IV.14 Lemma IV.16

(Section 13.2.5)

Lemma IV.13

13.A.1 Optimal/sub-optimal partioning of [τ,τ+ T )

The time segment of interest [τ,τ+T ) is partioned into sub-segments
⊎I

i=1[τi,τi+1) as follows:

τ1 := τ,

τi+1 := (τ+ T )∧

¨

inf{tk : tk > τi}
inf{t > τi : 1(gπt (St , M) = g∗(M)) ̸= 1(gπτi (Sτi

, M) = g∗(M))}
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and we write i ∈ Iopt if gπτi (Sτi
, M) = g∗(M) and i ∈ Isub if gπτi (Sτi

) < g∗(M), that we refer
to as optimal and sub-optimal segments. By design, every segment [τi,τi+1) is a subset of
an episode and the sequence (τi) is a increasing sequence of stopping times. The regret is
decomposed according to this partition:

Reg(τ,τ+ T ) =
∑

i∈Isub

τ0
i+1−1
∑

t=τ0
i

∆Zt
+
∑

i∈Iopt

τ0
i+1−1
∑

t=τ0
i

∆Zt
. (IV.12)

Both terms are bounded separately. The first corresponds to the regret on segments where the
current policy is sub-optimal, while the second corresponds to the regret on segments where the
current policy is asymptotically optimal.

13.A.2 Upper bounding the regret on sub-optimal segments

We have:
∑

i∈Isub

τi+1−1
∑

t=τi

∆Zt
≤
�

max
z∈Z
∆z

�
∑

i∈Isub

(τi+1 −τi). (IV.13)

We bound
∑

i∈Isub
(τi+1 −τi) directly.

(STEP 1) There exists a constant ε > 0 such that, on
⋂τ+T−1

t=τ Ft , we have:

|Z |(ϕ(τ) + 1)≥ ε
∑

i∈Isub

(τi+1 −τi) +
∑

i∈Isub

τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

∑

z∈Z
hπτi (ez, p)−

|Isub|
ε

(IV.14)

with sp(
∑

z∈Z hπτi (ez, p))≤ 1
ε , where hπ(ez, p) is the bias function of the policy π under the reward

function ez and kernel p. Moreover, ε can be chosen independently of F,τ, T and ϕ.

Proof. Let i ∈ Isub and fix z ∈ Z . Because the segment [τi,τi+1) is a piece of episode, πτi

is used all throughout the segment. The gain and bias functions of πτi
on the model with

reward function ez (equal to one at z and null elsewhere) and kernel p are respectively denoted
gπτi (−; ez, p) and hπτi (−; ez, p). Using the Poisson equation, we obtain:

(−) := Nz(τi+1)− Nz(τi)

=
τi+1−1
∑

t=τi

gπτi (St ; ez, p) + E
�

hπτi (Sτi
; ez, p)− hπτi (Sτi+1

; ez, p)
�

+
τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

hπτi (ez, p)

≥
τi+1−1
∑

t=τi

gπτi (St ; ez, p) +
τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

hπτi (ez, p)−
1
ε

where ε is any positive quantity smaller than (maxπmaxz sp(hπ(ez, p)))−1 > 0.
Let I z

sub := {i ∈ Isub : z ∈ Reach(πτi
, Sτi+1−1)}.

Because the segment [τi,τi+1) is a piece of episode, πτi
is used all throughout the segment

hence a pair that is reachable at time τi+1−1 is necessarily reachable during the entire segment.
Therefore, if i ∈ I z

sub, then gπτi (St ; ez, p)> 0 for all t ∈ [τi,τi+1 − 1). Further assume that ε is
smaller than min{gπ(s; ez, p) : z ∈ Reach(π, s), s ∈ S ,π ∈ Π}> 0. We obtain:

Nz(τi+1)− Nz(τi)≥ ε(τi+1 −τi) +
τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

hπτi (ez, p)−
1
ε

.
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Summing for i provides

max
i∈Isub

Nz(τi+1)− Nz(τ)≥ ε
∑

i∈I z
sub

(τi+1 −τi) +
∑

i∈I z
sub

τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

hπτi (ez, p)−
|I z

sub|
ε

.

Recall that for i ∈ Isub, the segment last until the next episode and gπτi (St , M) < g∗(M)
holds for all t ∈ [τi,τi+1). Meanwhile, coherence guarantees that, on

⋂τ+T−1
t=τ Ft , we have

Nz(τi+1) ≤ Nz(τ) + ϕ(τ) + 1 for all i ∈ Isub and z /∈ Z ∗(M). So, for all z /∈ Z ∗(M) and on
⋂τ+T−1

t=τ Ft , we have

ϕ(τ) + 1≥ ε
∑

i∈I z
sub

(τi+1 −τi) +
∑

i∈I z
sub

τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

hπτi (ez, p)−
|I z

sub|
ε

.

By coherence and on
⋂τ+T−1

t=τ Ft again, we see that i ∈ Isub belongs to one I z
sub for some

z /∈ Z ∗(M) at least. Summing for z /∈ Z ∗(M), we obtain the claim.

(STEP 2) There exists a constant η > 0 such that

∀x ≥ 0, P

�

|Isub| ≥ x +
1
η
ϕ(τ) and

τ+T−1
⋂

t=τ
Ft

�

≤ exp(−ηx). (IV.15)

Moreover, η can be chosen independently of F,τ, T and ϕ.

Proof. Denote Tsub(τ,τ+ T ) :=
⋃

i∈Isub
[τi,τi+1) the time instants when gπt (St , M)< g∗(M).

Introduce the quantity φ(t) :=
∑

z[ϕ(τ) + Nz(τ)− Nz(t)]+ for t ∈ [τ,τ + T), which is
non-increasing by construction. By coherence and on Ft , if t ∈ Tsub(τ,τ+ T ) then there exists
a reachable z such that ϕ(τ) + Nz(τ) − Nz(t) > 0. The crucial remark is that for i ∈ Isub
with [τi,τi+1) ⊆ [tk, tk+1), two things may hold at time τi+1: (1) Either i + 1 ∈ Iopt, meaning
that a state from which πτi

is optimal has been reached; (2) Or i + 1 /∈ Isub and τi+1 = tk+1,
in which case Sτi+1

has been already visited since τi. For (2), remark indeed that Sτi+1
has

been visited already since tk by regenerativity of episodes (Definition IV.6), but if tk ̸= τi then
gπτi (St , M) = g∗(M) for all t ∈ [tk,τi) hence Stk+1

cannot appear within the collection of states
visited in the time-range [tk,τi). Combining (1) and (2), we conclude that conditionally on the
history Oτi

, every reachable pair z ∈ Reach(πτi
, Sτi
) from which πτi

is sub-optimal have positive
probability ε(Sτi

,πτi
, z, M) to be visited until τi+1. Letting ε := mins,π,z ε(s,π, z, M) > 0, we

get:

(−) := P
�

φ(τi+1)< φ(τi) | Oτi
, i ∈ Isub, Fτi

�

≥ min
z ≡ (s, a) ∈ Reach(Sτi

,πτi
)

gπτi (s, M)< g∗(M)

P

�

Nz(τi+1)> Nz(τi)

�

�

�

�

Oτi
, i ∈ Isub, Fτi

�

≥ ε.

Let φ0(τ) := SAϕ(τ) and denote Fτ:τ+T :=
⋂τ+T−1

t=τ Ft . On Fτ:τ+T , φ can only decrease up to
φ0(τ) times before reaching zero, and once it has reached zero, we cannot have t ∈ Tsub(τ,τ+T )
anymore. Accordingly, for all m≥ 1, |Isub| ≥ m+φ0(τ) implies on Fτ:τ+T that the first in the
first m+φ0(τ) elements of Isub, at least m of them are such that φ(τi+1) = φ(τi). Introduce
the short-hand Uτi

:= 1(φ(τi+1) = φ(τi)). For λ > 0 and m≥ 1, we have:

ψ(m) := P(|Isub| ≥ m+φ0(τ) and Fτ:τ+T )
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= P

 

m+φ0(τ)
∑

j=1

Uτ j
≥ m and Fτ:τ+T

!

= E



1(exp

 

λ

m+φ0(τ)
∑

j=1

Uτ j

!

≥ exp(λm))1(Fτ:τ+T )





≤ exp(−λm)E



exp

 

λ

m+φ0(τ)
∑

j=1

Uτ j

!

1(Fτ:τ+T )





(†)
≤ exp(−λm)E



exp

 

λ

m+φ0(τ)−1
∑

j=1

Uτ j

!

1(Fτ:τm+φ0(τ)
) · 1(Fτm+φ0(τ)

)E
�

exp(λUτm+φ0(τ))
�

�Fτm+φ0(τ)

�





(‡)
≤ exp(−λm)E



exp

 

λ

m+φ0(τ)−1
∑

j=1

Uτ j

!

1(Fτ:τm+φ0(τ)
) · exp

�

λ(1− ε) +
λ2

8

�





...

≤ exp

�

−λm+λ(1− ε)(m+φ0(τ)) + (m+φ0(τ))
λ2

8

�

.

In the above, (†) use that 1(Fτ:τm+φ0
) · 1(Fτm+φ0

) ≤ 1(Fτ:τ+T ) and (‡) is an application of Ho-
effding’s Lemma together with the fact that E[Uτi

|Fτi
]1(Fτi

) ≤ 1− ε. Assume that m is large
enough so that εm> (1− ε)φ0(τ). Then we continue by factorizing the polynomial within the
exponential and minimizing in λ, straight forward algebra shows that for m≥ 2φ0(τ)

ε , we have:

P(|Isub| ≥ m+φ0(τ) and Fτ:τ+T )≤ exp

�

−
3ε2m

4

�

. (IV.16)

We conclude accordingly by choosing η= Θ(1+ 2
ε).

(STEP 3) There exists constants C0, C1, C2, C3 > 0 such that

∀x ≥ 0, P

 

∑

i∈Isub

(τi+1 −τi)> x + C3ϕ(τ) and
τ+T−1
⋂

t=τ
Ft

!

≤ C1T C2 exp(−C0 x). (IV.17)

Moreover, C0, C1, C2, C3 can be chosen independently of F,τ, T and ϕ.

Proof. Using a time uniform Azuma-Hoeffding’s inequality (Lemma I.22), we have:

∀δ > 0, P





∑

i∈Isub

τi+1−1
∑

t=τi

�

eSt+1
− p(Zt)

�

∑

z∈Z
hπτi (ez, p)< −

1
ε

√

√

√

∑

i∈Isub

(τi+1 −τi) log
�

T
δ

�



≤ δ.

Combined with (IV.14) from (STEP 1), we obtain an equation of the form x ≤ α+ β
p

x with
x =

∑

i∈Isub
(τi+1 −τi), α=

1
ε(|Z |(ϕ(τ) + 1) + 1

ε |Isub|) and β = 1
ε

p

log(T/δ). Simple algebra
shows that x ≤ 2α+ 2β2. In other words, we have shown that:

∀δ > 0, P

 

∑

i∈Isub

(τi+1 −τi)> C0 log
�

T
δ

�

+ C1ϕ(τ) + C2|Isub| and
τ+T−1
⋂

t=τ
Ft

!

≤ δ

for some model dependent constants C0, C1, C2 > 0. Use the sub-exponential tail property of
|Isub| (IV.15) from (STEP 2) to obtain a sub-exponential tail for

∑

i∈Isub
(τi+1 −τi).



Chapter 13. The Vanishing Multiplicative Condition (VM) 235

(STEP 4) There exist constants C0, C1, C2, C3 > 0 such that, for all η > 0,

P





∑

j∈J +sub

τ+j+1−1
∑

t=τ+j

∆Zt
> x + C3ϕ(τ) and

τ+T
⋂

t=τ
Ft



≤ C1T C2 exp(−C0 x). (IV.18)

Moreover, C0, C1, C2, C3 can be chosen independently of F,τ, T and ϕ.

Proof. Combine (IV.13) with the result of (STEP 3).

13.A.3 Upper bounding the regret on optimal segments

We start by merging consecutive optimal segments. This is done by setting:

τ+1 := inf
�

τi : i ∈ Iopt

	

τ+2 j := inf
¦

τi > τ
+
2 j−1 : i ∈ Isub

©

τ+2 j+1 := inf
¦

τi > τ
+
2 j : i ∈ Iopt

©

(IV.19)

that design a macroscopic decomposition of [τ,τ+ T −1) into time-segments, of which (τi) is a
refinement. Remark that if j is even, then [τ+j ,τ+j+1) ⊆

⋃

i∈Isub
[τi,τi+1) and conversely, if j is

odd, then [τ+j ,τ+j+1) \
⋃

i∈Isub
[τi,τi+1) =∅. We write j ∈ J +sub and j ∈ J +opt respectively.

By non-degeneracy of the model M , all asymptotically optimal policies of M have the same
(unique) invariant probability measure µ∗ ∈ P (Z ). On segments [τ+j ,τ+j+1) with j ∈ J +opt, ∆Zt

can only be positive if the optimal recurrent states S (supp(µ∗)) have not been reached yet. The
proof consists in showing that when j ∈ J +opt, the optimal recurrent class is quickly reached on
[τ+j ,τ+j+1). Indeed, setting τ∗j+1 := τ+j+1∧ inf{t > τ+j : µ∗(St)> 0} the reaching time to supp(µ∗)
after τ+j , we have:1

∑

j∈J +opt

τ+j+1−1
∑

t=τ+j

∆Zt
≤
�

max
z∈Z
∆z

�
∑

j∈J +opt

�

NZ−(M)(τ
+
j+1)− NZ−(M)(τ

+
j )
�

=
�

max
z∈Z
∆z

�
∑

j∈J +opt

�

τ∗j+1 −τ
+
j

�

.

(IV.20)
We now upper bound the RHS.

(STEP 1) There exists a constant D∗ > 0 as well as an adapted sequence (ht) with sp(ht)≤ D∗ s.t.:

∑

j∈J +opt

�

τ∗j+1 −τ
+
j

�

≤ 2D∗





�

�

�J +opt

�

�

�+
∑

j∈J +opt

�

�

�

¦

tℓ ∈ (τ+j ,τ+j+1) : µ∗(Stℓ) = 0
©

�

�

�



+
∑

j∈J +opt

τ∗j−1
∑

t=τ+j

�

eSt+1
− pZt

�

ht .

Moreover, D∗ is independent of F,τ, T and ϕ.

Proof. Notice that [τ+j ,τ+j+1) is of the form [t ′k, tk+1) ⊎
⊎

ℓ[tℓ, tℓ+1) where [t ′k ∈ [tk, tk+1] is a
time such that gπt−1(St−1; M)< gπt (St ; M) = g∗(St ; M). Consider the reward function f (z) :=
1(z /∈ Z ∗(M)). Over an episode [tℓ, tℓ+1) ⊆ [τ+j ,τ+j+1), the gain and the bias of πℓ associated to

this reward function are respectively denoted g(ℓ) and h(ℓ). Because the recurrent pairs under
πℓ from Stℓ are supp(µ∗), we have g(ℓ)(s) = 0 for all (s, a) ∈ Reach(Stℓ ,π

ℓ, M) and h(ℓ)(s) = 0

1µ is a measure on Z . For s ∈ S , we write µ(s) :=
∑

a∈A (s)µ(s, a).
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for all (s, a) ∈ supp(µ∗). Let D∗ <∞ the maximum sp(h(ℓ)) possible over all πℓ ∈ Π. Using
Poisson’s equation g(ℓ)(s) + h(ℓ)(s) = f (s,πℓ(s)) + p(s,πℓ(s))h(ℓ), we obtain:

τ∗j+1 −τ
+
j = NZ−(M)(τ

+
j+1)− NZ−(τ

+
j )

=
∑

ℓ

�

h(ℓ)(Stℓ)− h(ℓ)(Stℓ+1
)
�

+
∑

ℓ

tℓ+1−1
∑

t=tℓ

�

eSt+1
− pSt ,At

�

h(ℓ)

≤ 2D∗ +
∑

ℓ:tℓ∈(τ+j ,τ+j+1)

�

h(ℓ)(Stℓ)− h(ℓ)(Stℓ+1
)
�

+
∑

ℓ

tℓ+1−1
∑

t=tℓ

�

eSt+1
− pSt ,At

�

h(ℓ)

(†)
= 2D∗ +

∑

ℓ>k

1(tℓ < τ
∗
j )
�

h(ℓ)(Stℓ)− h(ℓ)(Stℓ+1
)
�

+
∑

ℓ

tℓ+1−1
∑

t=tℓ

1(t < τ∗j )
�

eSt+1
− pSt ,At

�

h(ℓ)

(‡)
≤ 2D∗

�

1+
�

�

�

¦

tℓ ∈ (τ+j ,τ+j+1) : µ∗(Stℓ) = 0
©

�

�

�

�

+
τ∗j−1
∑

t=τ j

�

eSt+1
− pSt ,At

�

ht

where (†) follows from h(ℓ) = 0 on the support of µ∗, and (†) introduces ht as the unique h(ℓ)

such that t ∈ [tℓ, tℓ+1). Conclude by summing over i ∈ J +opt.

(STEP 2) There exist constants C1, C2, C3, C4 > 0 such that, for all η > 0,

∀x ≥ 0, P





∑

j∈J +opt

�

τ∗j+1 −τ
+
j

�

> x + C4ϕ(τ) and
τ+T
⋂

t=τ
Ft



≤ C1T C2 exp(−C3 x). (IV.21)

Moreover, C1, C2, C3, C4 can be chosen independently of F,τ, T and ϕ.

Proof. We bound every term appearing in (STEP 1).
The first term involves |J +opt|. Because elements of J +opt and J +sub are intertwined, we

|J +opt| ≤ 1+ |J +sub|. Moreover, since macroscopic segments [τ+j ,τ+j+1) are unions of segments
[τi,τi+1), we have |J +sub| ≤ |Isub| that has been bounded in (IV.15) already. Accordingly, |J +sub|
has sub-exponential tails on the good event

⋂τ+T−1
t=τ Ft :

∀x ≥ 0, P

�

�

�J +sub

�

�≥ x +
1
c
ϕ(τ) and

τ+T−1
⋂

t=τ
Ft

�

≤ exp(−cx) (IV.22)

where c > 0 is a model dependent constant.
For the second term, remark that for each tℓ ∈ [τ j,τ j+1) with j ∈ J +opt, the probability

that the episode ends with Stℓ+1
∈ supp(µ∗) is positive because of the regenerativity property

(Definition IV.6) of (VM). This is also true for the first (possibly) truncated episode [t ′k, tk+1)
that starts the macroscopic segment [τ+j ,τ+j+1) because as the gain gπt (St ; M) increases from
t ′k−1 to t ′k to the optimal gπt (St , M) = g∗(St ; M), all states that are reachable from St under πt
cannot have been visited yet during the episode. In the end, the probability of reaching supp(µ∗)
by the end of the episode is lower bounded by some ε′(πtℓ , Stℓ , M) > 0 and we denote ε′ > 0
the minimum for all possible values of πℓ and Stℓ . We conclude that P(µ∗(Stℓ+1

)> 0 | Otℓ)> ε
′.

Accordingly,

Uτ+j :=
�

�

�

¦

tℓ ∈ (τ+j ,τ+j+1) : µ∗(X tℓ) = 0
©

�

�

�
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is stochastically dominated by a geometric distribution G(ε′). Using bounds on tails of geometric
random variables (Lemma I.29), we obtain:

P





∑

j∈J +opt

�

�

�

¦

tℓ ∈ (τ+j ,τ+j+1) : µ∗(Stℓ) = 0
©

�

�

�>
�

�

�J +opt

�

�

�

�

1+ 2
ε′

�

+ 2η log(T )
log( 1

1−ε′ )



≤ T−η. (IV.23)

The third term
∑

j∈J +opt

∑τ∗j+1−1
t=τ j

(eSt+1
− pZt

)ht is the sum of a martingale difference sequence,
each term having span at most D∗ by (STEP 1). By applying a time-uniform Azuma-Hoeffding’s
inequality (Lemma I.22), we obtain:

P





∑

j∈J +opt

τ∗j+1−1
∑

t=τ j

(eSt+1
− pZt

)ht > D∗
√

√

√

∑

j∈J +opt

�

τ∗j+1 −τ
+
j

�

�

1
2 +η

�

log(1+ T )



≤ T−η. (IV.24)

Combining the bound of the first term, (IV.23) and (IV.24), we see that there exists C1, C2, C3, C4
such that for all η > 0, with probability 1− 3T−η,

∑

j∈J +opt

�

τ∗j+1 −τ
+
j

�

≤ C1 + (C2 +ηC3)(log(T ) +ϕ(τ)) + C4

√

√

√

∑

j∈J +opt

�

τ∗j+1 −τ
+
j

�

�

1
2 +η

�

log(T ).

This is an equation of the form x ≤ α + β
p

x that implies in particular x ≤ 2(α + β2). We
conclude by rearranging terms of the equation.

(STEP 3) There exist constants C1, C2, C3, C4 > 0 such that, for all η > 0,

P





∑

j∈J +opt

τ+j+1−1
∑

t=τ+j

∆Zt
> x + C4ϕ(τ) and

τ+T
⋂

t=τ
Ft



≤ C1T C2 exp(−C3 x). (IV.25)

Moreover, C1, C2, C3, C4 can be chosen independently of F,τ, T and ϕ.

Proof. Invoke (IV.20) and apply the result of (STEP 2).

13.A.4 Combining everything

Conclude by combining (IV.12) with Section 13.A.2 (STEP 4) and Section 13.A.3 (STEP 3).

13.B The asymptotic regime of (VM): Proof of Lemma IV.14

In this section, we provide a proof of Lemma IV.14: Let M ∈M a non-degenerate model. Assume
that the algorithm running is EVI-based with a confidence regionM (t) ≡Mδ(t)(t) as given by
Section 7.A.2 such that Assumption 5 is satisfied, managing episodes with f -(VM) with arbitrary
f ∈ (0, 1]. There exists λ > 0 s.t.:

∀z /∈ Z∗∗(M), PM(∃T,∀t ≥ T : Nz(t)< λ log(t)) = 1, and

∀z ∈ Z∗∗(M), PM
�

∃T,∀t ≥ T : Nz(t)>
1
λ t
�

= 1.

The proof is relies on the coherence lemma (Lemma IV.13). We show that the confidence
regions are such that, if a sub-optimal policy is played, one of the pairs responsible for its opti-
mistic gain must be sub-sampled. This provides a “global” coherence property, see (STEP 1), this
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EVI-based
algorithm

Linear visits Nz(T ) =
Ω(T) on Z ∗∗(M)

Shaking effect
(Section 13.2.2)

Asymptotic regime
(Section 13.2.3)

Logarithmic visits
Nz(T) = O(log(T))

outside Z ∗∗(M)

Shrinking effect
(Section 13.2.2)

∗ Local coherence
(Section 13.2.5)

RegExp(T) =
O(log(T))

Lemma IV.13

Global coherence

Lemma IV.14 Lemma IV.15

Lemma IV.14 Lemma IV.16

(Section 13.2.5)

Lemma IV.13

is used to upper bound the asymptotic visit rates of sub-optimal pairs, see (STEP 2) and (IV.29).
Invoking the coherence lemma requires Assumption 5 to hold and M to be non-degenerate. We
deduce in parallel that non optimal pairs are visited at most logarithmically often in (STEP 3)
with (IV.31), and that optimal pairs are visited at least linearly often in (STEP 4) with (IV.32).

(STEP 1) There exists a sequence of adapted events (Ft) satisfying P(∃T,∀t ≥ T : Ft) = 1 and a
function ϕ : N→ R+ with ϕ(t) = O(t) s.t. the algorithm is ((Ft), ⌊log(T )⌋, T,ϕ)-coherent.

Proof. Introduce the good event Et := {M ∈M (t)}. By design of the confidence region (see
Section 7.A.2), P(∃T,∀t ≥ T : Et) = 1. Let T ≥ 1 and set T0 := ⌊log(T)⌋. Pick t ∈ [T0, T] and
let [tk, tk+1) the unique episode it falls in. We denote π ≡ πk for short and assume that π is
sub-optimal from St t, i.e.,

g∗(St ; M)> gπ(St ; M). (IV.26)

So there exists a class of pairs Z ′ which is recurrent under π, with Z ′ ⊆ Reach(π, St) and such
that gπ(s; M)< g∗(s; M) for every s ∈ S (Z ′). Let s0 ∈ S (Z ′).

Denote ∆g := min{g∗(s; M)− gπ(s; M) : π ∈ Π, s ∈ S , g∗(s; , M)> gπ(s; M)} > 0 the min-
imal gain gap in M . Because π is output by EVI (Algorithm 2) at time tk, it is optimisti-
cally optimal at time tk and g∗(St ;M (tk)) = g(St ; r̃π, p̃π) for some r̃π ∈

∏

sRs,π(s)(tk) and
p̃π ∈

∏

sPs,π(s)(tk). Furthermore, on Et , we have D(M (t))≤ D(M) hence every policy returned
by EVI (Algorithm 2) has optimistic bias span at most D(M) and its optimistic gain has null
span. We have, on Etk

,

∆g ≤ g∗(s0; M)− gπ(s0; M)
(†)
≤ gπtk (s0;M (tk))− gπ(s0; M)
(‡)
≤ ∥r̃ − r∥∞,Reach(π,s0) +

1
2 D(M)∥p̃− p∥1,Reach(π,s0).

In (†), we have used that, on Etk
, g∗(s0; M)≤ g∗(s0;M (tk)) = g∗(Stk

;M (tk)) = gπ(Stk
;M (tk)).

In (‡), we first invoke a gain deviation inequality (Theorem II.1), then rely on the fact that
by Assumption 5, the optimistic gain of π computed by EVI only depends on pairs that are
reachable from s0 under π on M . One of the two terms of the RHS of the above equation must
be at least 1

2∆g . For instance, D(M)∥p̃− p∥1,Reach(π,s0) ≥∆g . We have:

∆g ≤ D(M)
�

∥p̃− p̂∥1,Reach(π,s0) + ∥p̂− p∥1,Reach(π,s0)

�

= D(M)
�

min
z∈Reach(π,s0)

∥p̃z − p̂z(tk)∥1 + min
z∈Reach(π,s0)

∥p̂z − pz∥1

�

.
(IV.27)

Knowing that p̃z ∈ Pz(tk) and that Pz(−) either (C1) directly using Weissman’s inequality
(Lemma I.23), or (C2) using an empirical Bernstein’s inequality (Lemma I.24) or (C3) using em-
pirical likelihood inequalities (Lemma I.25), there exists a constant such that Nz(t)∥p̃z − p̂z(t)∥

2
1 ≤
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C log(t). Under (C1) this follows by construction; Under (C2), this is a consequence of Pinsker’s
inequality; This is slightly less easy to see under (C3). If Pz(t) is built using an empirical
Bernstein’s inequality, then it is obtained as a region of the form:

∏

s∈S

§

p̃z,s ∈ [0,1] :
�

�p̃z,s − p̂z,s(t)
�

�≤ α
r

log(t)
Nz(t)

+ β log(t)
Nz(t)

ª

∩P (S )

that is approximated by inequality in ℓ1-norm by using (α+β2)
p

log(t)/n∧1≥ (α
p

log(t)/n+
β log(t)/n)∧ 1. Overall, there exists a constant C > 0 such that whether Pz(t) is built out of
(C1-3), we have:

Pz(t) ⊆
�

p̃z ∈ P (S ) : Nz(t)∥p̃z − p̂z(t)∥
2
1 ≤ C log(t)

	

=:P ′z (t).

Up to increasing C , we can further assume that P(∃T ≥ 1,∀t ≥ 1 : pz ∈ P ′z (t)) = 1. Injecting this
in Equation (IV.27), we see that on the asymptotically almost sure event F p

tk
:=
�

∀z, pz ∈ P ′z (t)
	

,
we have:

∆g ≤ 2D(M) min
z∈Reach(π,s0)

√

√

√C log(tk)
Nz(tk)

(†)
≤ 2D(M) min

z∈Reach(π,s0)

√

√2C log(2t)
Nz(t)

(IV.28)

where (†) uses that the (VM) guarantees Nz(tk+1)≤ 2Nz(tk) and tk+1 ≤ 2tk. Solving (IV.28) in
Nz(t), we find a condition of the form Nz(t)≤ C ′ log(t).

The same rationale can be used to handle the case where ∥r̃ − r∥∞,Reach(π,s0) ≥
1
2∆g , dealing

with the design of another asymptotically almost sure event F r
t :=

�

∀z, rz ∈ R ′z(t)
	

and ending
with the same kind of upper-bound on Nz(t). In the end, setting Ft :=

⋂t
t ′=⌊t/2⌋ F

r
t ′ ∩ F p

t ′ ∩ Et ′

and ϕ(T0) = C ′ log(t), we see that the algorithm is ((Ft), T0, T,ϕ)-coherent.

(STEP 2) There exists C > 0 such that:

P
�

∃T,∀t ≥ T,∀z ∈ Z−(M) : Nz(t)≤ C log(t)
�

. (IV.29)

Proof. Since M is non-degenerate, coherence can be converted to regret guarantees (Lemma IV.13):
From (STEP 1) follows that there exists constants C1, C2 > 0 such that:

∀T ≥ 1, P

�

Reg(log(T ), T )≥ C1 + C2 log(T ) and
T
⋂

t=⌊log(T )⌋
Ft

�

≤ T−2. (IV.30)

Since Nz(T) ≤ Nz(T0) +∆−1
z Reg(T0, T), the condition Reg(log(T), T) ≤ C1 + C2 log(T) is con-

verted to Nz(T )≤ C ′1 + C ′2 log(T ) for all z ∈ Z−(M). We have:

(∗) := P
�

∀T,∃t ≥ T,∃z ∈ Z−(M) : Nz(t)> C ′1 + C ′2 log(t)
�

(†)
= P

�

∀T,∃t ≥ T,∃z ∈ Z−(M) : Nz(t)> C ′1 + C ′2 log(t) and
T
⋂

t=⌊log(T )⌋
Ft

�

≤ P

�

∀T,∃t ≥ T,∃z ∈ Z−(M) : Reg(log(T ), T )> C1 + C2 log(T ) and
T
⋂

t=⌊log(T )⌋
Ft

�

= lim
T→∞

∑

t≥T

∑

z∈Z−(M)

P

�

Reg(log(T ), T )> C1 + C2 log(T ) and
T
⋂

t=⌊log(T )⌋
Ft

�

(‡)
≤ SA lim

T→∞
1
T = 0.

In the above, (†) follows by P(lim sup Ft) = 1 and (‡) by (IV.30). Up to assuming t large enough,
we eventually have C ′2 log(T )≥ C ′1 hence the constant term can be ignored.
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(STEP 3) There exists C > 0 such that:

P(∃T,∀t ≥ T,∀z /∈ Z ∗∗(M) : Nz(t)≤ C log(t)). (IV.31)

Proof. Because M is non-degenerate, Z ∗(M) defines a unique policy that we denote π∗. Intro-
duce the reward function f (z) := 1(z /∈ Z ∗∗(M)). Let g f , h f and ∆ f the gain, bias and gap
functions of π∗ in M endowed with the reward function f . Remark that g f (s) = 0, that h f (s) = 0
for (s,π∗(s)) ∈ Z ∗∗(M) and that ∆ f (z) = 0 for z ∈ Z ∗(M). Denote H f := sp(h f )∨maxz|∆ f (z)|.
Therefore:

∑

z /∈Z ∗∗(M)

Nz(T ) =
T
∑

t=1

f (Zt)

=
T
∑

t=1

��

eSt
− p(Zt)

�

h f −∆ f (Zt)
�

≤ H f +
T
∑

t=1

1(Zt /∈ Z ∗∗(M))
�

eSt+1
− p(Zt)

�

h f +H f
∑

z∈Z−(M)

Nz(T )

(†)
≤ H f



1+ 2

√

√

√

∑

z /∈Z ∗∗(M)

Nz(T ) log(T ) +
∑

z∈Z−(M)

Nz(T )





(‡)
≤ H f



1+ 2

√

√

√

∑

z /∈Z ∗∗(M)

Nz(T ) log(T ) + SAC log(T )





where (†) holds with probability 1− T−2 by Azuma-Hoeffding’s inequality (Lemma I.22), and (†)
holds on the asymptotically almost sure event (∀z ∈ Z−(M), Nz(T) ≤ C log(T)) (see (IV.29)).
This is an equation of the form n ≤ α+ β

p
n that implies in particular n ≤ 2(α+ β2). In the

end, we get:

P

 

∀T,∃t ≥ T :
∑

z /∈Z ∗∗(M)

Nz(t)≤ 2H f (1+ SAC log(T ) + 4 log(T ))

!

= 1.

This concludes the proof.

(STEP 4) There exists c > 0 such that:

P(∃T,∀t ≥ T,∀z ∈ Z ∗∗(M) : Nz(t)≥ c t) = 1. (IV.32)

Proof. This is established with a similar technique than (IV.31) in (STEP 3). By non-degeneracy
of M , Z ∗(M) defines a unique policy that we denote π∗. Fix z0 ∈ Z ∗∗(M) and introduce the
reward function f (z) = 1(z = z0). Remark that g f (s) = c > 0 for all s ∈ S and that ∆ f (z) = 0
for all z ∈ Z ∗(M). Let H f := sp(h f )∨maxz|∆ f (z)|. We have:

Nz0
(T ) :=

T
∑

t=1

f (Zt)

= cT +
T
∑

t=1

��

eSt
− p(Zt)

�

h f −∆ f (Zt)
�

≥ cT −
T
∑

t=1

1(Zt ∈ Z−(M))
�

eSt+1
− p(Zt)

�

h f −H f
∑

z∈Z−(M)

Nz(T )
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≥ cT − 2
p

H f SAC · log(T )−H f SAC log(T )∼ cT

where the last inequality holds with probability 1− T−2 on the asymptotically almost sure event
(∀z ∈ Z−(M) : Nz(T )≤ C log(T )) given by (IV.29). We conclude accordingly.

13.C The shrinking effect: Proof of Lemma IV.15

In this section, we provide a proof of Lemma IV.15: Let (tk(i)) the enumeration of exploration
episodes, and let T ≥ 1. Fix λ, z ∈ Z > 0. For all δ > 0, we can find ε, m, C > 0 such that:

kernel : P

�

Ftk(i)
and

�

∃t ∈ [tk(i), tk(i) + T] :
Pz(t) ̸⊆ Pz(tk(i)−1)

and Nz(t)> Nz(tk(i)) + C log
�

T
δ

�

��

≤ δ,

reward : P

�

Ftk(i)
and

�

∃t ∈ [tk(i), tk(i) + T] :
supRz(t)> supRz(tk(i)−1)−

Nz(t)−Nz(tk(i))
(tk(i))1/3

and Nz(t)> Nz(tk(i)) + C log
�

T
δ

�

��

≤ δ

where Ftk(i)
:= (Nz(tk(i))<

1
λ log(tk(i)),

�

�r̂z(tk(i)−1)− rz

�

�< ε,


p̂z(tk(i)−1)− pz



< ε, tk(i) > m).

The result is established separately for confidence regions constructed out of (C1) Weissman’s
inequality, (C2) empirical Bernstein inequalities and (C3) Empirical likelihood inequalities (see
Section 7.A.2 for explicit formulas).

EVI-based
algorithm

Linear visits Nz(T ) =
Ω(T) on Z ∗∗(M)

Shaking effect
(Section 13.2.2)

Asymptotic regime
(Section 13.2.3)

Logarithmic visits
Nz(T) = O(log(T))

outside Z ∗∗(M)

Shrinking effect
(Section 13.2.2)

∗ Local coherence
(Section 13.2.5)

RegExp(T) =
O(log(T))

Lemma IV.13

Global coherence

Lemma IV.14 Lemma IV.15

Lemma IV.14 Lemma IV.16

(Section 13.2.5)

Lemma IV.13

13.C.1 Weissman-type confidence regions

Establishing the shrinking phenomenon on kernels and rewards follows a similar line for rewards
and kernels. Because they are a little bit harder, the analysis of the shrinking behavior of the
kernels’ confidence regions is detailed, and we explain how to adapt the proof to the rewards’
confidence regions.

Lemma IV.20 (Shrinking Kernels, Weissman region). Assume that confidence regions are
built out of Weissman’s inequality (C1), i.e., Pz(t) := {p̃z ∈ P (S ) : Nz(t)∥p̃z − p̂z(t)∥2

1 ≤
C0 log(C1 t)} with C0, C1 > 0. Fix λ > 0, z ∈ Z . For all δ > 0, we can find ε, M , C > 0 such
that:

P

�

Ftk(i)
and

�

∃t ∈ [tk(i), tk(i) + T] :
Pz(t) ̸⊆ Pz(tk(i)−1)

and Nz(t)> Nz(tk(i)) + C log
�

T
δ

�

��

≤ δ

where Ft := (Nz(tk(i))<
1
λ log(tk(i)), |p̂z(tk(i)−1)− pz|< ε, tk(i) > m).
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Proof. Write Nz(t, t ′) := Nz(t ′)−Nz(t) the number of times z ∈ Z is visited between the times t
and t ′. The empirical transition at time t is expressed as:

p̂z(t) = p̂z(tk(i)−1) +
1

Nz(t)

 

Nz(tk(i)−1, t)
�

pz − p̂z(tk(i)−1)
�

+
t−1
∑

i=tk(i)−1

1(Zi = z)
�

eSi+1
− pz

�

!

=: p̂z(tk(i)−1) +wz(tk(i)−1, t). (IV.33)

On the event Ft , we have ∥wz(tk(i)−1, t)∥1 ≤
1

Nz(t)
(Nz(tk(i)−1, t)ε+ ∥

∑

i 1(Zi = z)(eSi+1
− p)∥1),

consisting in two terms. The first term is an error a priori, while the second is a the norm
of a martingale which is the sum of Nz(tk(i)−1, t) terms. Because in the target probability of
Lemma IV.20, we invoke Ftk(i)

that is Htk(i)
-measurable, any visit of z prior to tk(i) in the martingale

part of wz(tk(i)−1, t) must be casted out. Thankfully, on Ftk(i)
, we have:

Nz(tk(i))≤ ⌊
�

1+ f (tk(i)−1)
�

Nz(tk(i)))⌋+ 1≤ Nz(tk(i)−1) + 1+ ⌊ 1
λ f (tk(i)−1) log(tk(i))⌋

which is equal to Nz(tk(i)−1) + 1 since f (t) = o
�

1
log(t)

�

, provided that tk(i) ≥ m is large enough.
Accordingly, we have Nz(tk(i)−1, tk(i))≤ 1 on Ftk(i)

. So, on Ftk(i)
, we have:



wz(tk(i)−1, t)




1 ≤
1

Nz(t)

 

2+ Nz(tk(i), t)ε+











t−1
∑

i=tk(i)

1(Zi = z)
�

eSi+1
− pz

�











1

!

. (IV.34)

By applying Weissman’s inequality (Lemma I.23), the martingale can then be bounded as follows:

P

 

∀t ∈ [tk(i), tk(i) + T],











t−1
∑

i=tk(i)

1(Zi = z)
�

eSi+1
− pz

�











1

≥
Ç

SNz(tk(i), t) log
�

T
δ

�

!

≤ δ. (IV.35)

Pick p̃z ∈ Pz(t). Following (IV.35), we derive conditions on Nz(tk(i), t) such that p̃z ∈ Pz(tk(i)−1)
with high probability. We have:

(∗) =
q

Nz(tk(i)−1)


p̃z − p̂z(tk(i)−1)




1

≤
q

Nz(tk(i)−1)


p̂z(t)− p̂z(tk(i)−1)




1 +
q

Nz(tk(i)−1)∥p̃z − p̂z(t)∥1

≤
q

Nz(tk(i)−1)


wz(tk(i)−1, t)




1 +

√

√

√
Nz(tk(i)−1)

Nz(t)
· C1 log(C2 t)

≤
q

Nz(tk(i)−1)


wz(tk(i)−1, t)




1 +

√

√

√
Nz(t)− Nz(tk(i)−1, t)

Nz(t)
· C1 log(C2 tk(i)−1) + o

�

1
t

�

(†)
≤
q

C1 log(C2 tk(i)−1)−
Nz(tk(i)−1, t)

Æ

Nz(tk(i)−1)

2Nz(t)

 
√

√

√

C1 log(C2 tk(i)−1)

Nz(tk(i)−1)
− 2ε−

4
Nz(tk(i), t)

!

+

q

SNz(tk(i)−1)Nz(tk(i), t) log
�

T
δ

�

Nz(t)
+ o

�

1
tk(i)−1

�

where (†) is obtained by a combination of (IV.34) and (IV.35), hence hold uniformly on t with
probability 1−δ. On Ftk(i)

, we have Nz(tk(i)−1)≤
1
λ log(tk(i)−1) hence Nz(tk(i)−1)≤

1
λ log(C2 tk(i)−1)

since C2 ≥ 1. Using this in the equation above and simplifying terms a bit, we upper-bound (∗)
by:

q

C1 log(C2 tk(i)−1) +

Æ

Nz(tk(i)−1)

Nz(t)

�

2− Nz(tk(i)−1, t)
�

1
2

Æ

λC1 − ε
�

+
Ç

Nz(tk(i)−1, t) · S log
�

T
δ

�

�
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The right-term is a deviation that up to the normalization
Æ

Nz(tk(i)−1)/Nz(t), contains a term
scaling as −Nz(tk(i)−1, t) and another in

Æ

Nz(tk(i)−1, t). The first is expected to be dominant,
and this is indeed the case if ε < 1

6

p

λC1 and
Æ

Nz(tk(i)−1, t) log(T/δ < 1
6 Nz(tk(i)−1, t)

p

λC1.
The second requirement leads to the sufficient condition:

Nz(tk(i)−1, t)≥ 36S
C1λ

log
�

T
δ

�

=: C log
�

T
δ

�

. (IV.36)

Combining (IV.36), (IV.35) and the above upper-bound on (∗), provided that Nz(tk(i)−1, t) ≥
C log( T

δ ) and that ε > 0 is chosen small enough, it holds on Ftk(i)
with probability 1−δ that, for

all t ∈ [tk(i), tk(i) + T],

q

Nz(tk(i)−1)


p̃z − p̂z(tk(i)−1)




1 ≤
q

C1 log(C2 tk(i)−1)−
Nz(tk(i)−1, t)

Æ

Nz(tk(i)−1)C1λ

6Nz(t)
+o
�

1
tk(i)−1

�

(IV.37)
To conclude, observe that the o( 1

T ) is negligible in front of the negative term provided that t is
large in front of T . We conclude that the condition (IV.37) is enough to guarantee p̃z ∈ Pz(tk(i)−1),
hence finishing the proof.

Lemma IV.21 (Shrinking Rewards, Weissman region). Assume that confidence regions
are built out of Weissman’s inequality (C1), i.e., Rz(t) := {r̃z ≥ 0 : Nz(t)|r̃z − r̂z(t)|2 ≤
C0 log(C1 t)} with C0, C1 > 0. Fix λ > 0, z ∈ Z . For all δ > 0, we can find ε, M , C > 0 such
that:

P

�

Ftk(i)
and

�

∃t ∈ [tk(i), tk(i) + T] :
supRz(t)> supRz(tk(i)−1)−

Nz(t)−Nz(tk(i))
C log(tk(i))

and Nz(t)> Nz(tk(i)) + C log
�

T
δ

�

��

≤ δ

where Ft := (Nz(tk(i))<
1
λ log(tk(i)), |r̂z(tk(i)−1)− rz|< ε, tk(i) > m).

Proof. The proof is exactly the same up to the analogue of (IV.37):

q

Nz(tk(i)−1)


r̂z(tk(i)−1)− r̃z





1 ≤
q

C1 log(C2 tk(i)−1)−
Nz(tk(i)−1, t)

Æ

Nz(tk(i)−1)C1λ

6Nz(tk(i)−1)
+o
�

1
tk(i)−1

�

.

For the same reasons, the o( 1
tk(i)−1
) is negligible. But also, because Nz(tk(i)−1) ≤ λ log(tk(i)−1),

provided that t is large in front of T , we are guaranteed that Nz(t)
p

1/(λC1)≤ (λ log(tk(i)) +
T)
p

1/(λC1) ≤ C0 log(tk(i)) for some constant C0, provided that tk(i) is large enough. Hence,
we obtain that on the concentration event specified by (IV.35) and on Ftk(i)−1

,



r̂z(tk(i)−1)− r̃z





1 ≤

√

√

√

C1 log(C2 tk(i)−1)

Nz(tk(i)−1)
−

Nz(tk(i)−1, t)

6C0 log(tk(i))

Further pick C ≥ 6C0. This concludes the proof.

13.C.2 About empirical Bernstein and empirical likelihood confidence
regions

Lemma IV.20 can be adapted to Bernstein-type confidence regions (II.7) and empirical likelihood
confidence regions (II.6), see Section 7.A.2 for the descriptions of such regions with explicit
constants. These proofs follow a similar line than Lemma IV.20 but the computations are
region-specific. The details can be found in the original paper Boone and Gaujal (2024).
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13.D The shaking effect: Proof of Lemma IV.16

In this section, we provide a proof of Lemma IV.16: Let (tk(i)) the enumeration of exploration
episodes, and let T ≥ 1. Fix λ, z ∈ Z and for two sets U ,V ⊆ Rn, denote dH(U ,V ) the Hausdorff
distance induced by the one-norm. We can find c, m> 0 such that:

(kernels) Ftk(i)
⊇
�

∀t ∈ [tk(i), tk(i) + T] : dH(Pz(t),Pz(tk(i)−1))≤
Ç

c log(t)
t

�

,

(rewards) Ftk(i)
⊇
�

∀t ∈ [tk(i), tk(i) + T] : dH(Rz(t),Rz(tk(i)−1))≤
Ç

c log(t)
t

�

where Ftk(i)
:= (Nz(tk(i)−1)> λtk(i)−1, tk(i) > m)∩ (∀t ∈ [tk(i)−1, tk(i)], M ∈Mδ(t)(t)).

Similarly to Lemma IV.15, the result is established separately for confidence regions con-
structed out of (C1) Weissman’s inequality, (C2) empirical Bernstein inequalities and (C3)
Empirical likelihood inequalities (see Section 7.A.2 for explicit formulas).

EVI-based
algorithm

Linear visits Nz(T ) =
Ω(T) on Z ∗∗(M)

Shaking effect
(Section 13.2.2)

Asymptotic regime
(Section 13.2.3)

Logarithmic visits
Nz(T) = O(log(T))

outside Z ∗∗(M)

Shrinking effect
(Section 13.2.2)

∗ Local coherence
(Section 13.2.5)

RegExp(T) =
O(log(T))

Lemma IV.13

Global coherence

Lemma IV.14 Lemma IV.15

Lemma IV.14 Lemma IV.16

(Section 13.2.5)

Lemma IV.13

13.D.1 Weissman-type confidence regions

Again, the shaking phenomenon on kernels and rewards follows for similar reasons; Proving it
for rewards consists in establishing the shaking property in dimension one, while proving it for
kernels consits in establishing the shaking property in dimension |S |. We accordingly to the
proof of the result for kernels.

Lemma IV.22 (Shaking Kernels, Weissman region). Assume that confidence regions are
built out of Weissman’s inequality (C1), i.e., Pz(t) := {p̃z ∈ P (S ) : Nz(t)∥p̃z − p̂z(t)∥2

1 ≤
C0 log(C1 t)} with C0, C1 > 0. Fix λ, z ∈ Z and for two sets U ,V ⊆ Rn, denote dH(U ,V )
the Hausdorff distance induced by the one-norm. We can find c, m> 0 such that:

(kernels) Ftk(i)
⊆
�

∀t ∈ [tk(i), tk(i) + T] : dH(Pz(t),Pz(tk(i)−1))≤
Ç

c log(t)
t

�

,

(rewards) Ftk(i)
⊆
�

∀t ∈ [tk(i), tk(i) + T] : dH(Rz(t),Rz(tk(i)−1))≤
Ç

c log(t)
t

�

where Ftk(i)
:= (Nz(tk(i)−1)> λtk(i)−1, tk(i) > m)∩ (∀t ∈ [tk(i)−1, tk(i)], M ∈Mδ(t)(t)).

Proof. Recall that δ(t) = 1
t . By construction ofMδ(t)(t), for all t ∈ {tk(i)−1, . . . , tk(i)}, we have

∥pz − p̂z(t)∥1 ≤

√

√

√S log(2SA(1+ Nz(t)))
Nz(t)

≤

√

√

√

S log(2SAtk(i))

λtk(i)−1
. (IV.38)
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The vanishing multiplicative condition (VM) guarantees that tk(i) ≤ 2tk(i)−1 provided that tk(i) is
large enough, hene providing Nz(tk(i))≥

1
2λtk(i). Moreover, if tk(i) is large in front of T , then p̂(t)

moves by O( T
Nz(tk(i))

) = O( T
tk(i)
) during the time-segment {tk(i), . . . , tk(i)+T−1}, which is negligible

in front of
Æ

log(tk(i))/tk(i). We accordingly extend (IV.38) to t ∈ {tk(i)−1, . . . , tk(i)+ T −1} with:

∥pz − p̂z(t)∥1 ≤

√

√

√

2S log(2SAtk(i))

λtk(i)
+ o

 
√

√

√

log(tk(i))

tk(i)

!

= Θ

�√

√ log(t)
t

�

. (IV.39)

The result is therefore obtained by estimating the Hausdorff distance between ℓ1-ball of radius
Θ(
p

log(t)/t) and with centers at distance Θ(
p

log(t)/t).

13.D.2 About empirical Bernstein-type and empirical likelihodd confi-
dence regions

Similarly to the shrinking phenomenon, Lemma IV.22 can be adapted to Bernstein-type confidence
regions (II.7) and empirical likelihood confidence regions (II.6), see Section 7.A.2 for the
descriptions of such regions with explicit constants. These proofs follow a similar line than
Lemma IV.20 but the computations are region-specific. The details can be found in the original
paper Boone and Gaujal (2024).



Chapter 14

Beyond the regret of exploration:
The Sliding Regret

In this last chapter, we go beyond the study of the local regret at exploration times (Definition IV.1).
The question is essentialized by studying the problem from the lens of multi-armed bandits
and more particularly two-armed bandits. The question is the following: The celebrated UCB
algorithm Auer (2002) is perhaps the simpler EVI-based algorithm (Algorithm II.2) possible. It
is episode-less by renewing its policy at each round, so it should not suffer of the linear regret of
exploration induced by Equation (DT), and should even have better guarantees that (PT) and
(VM). And yet, when running UCB, we observe that its first order regret is bumpy because UCB
plays sub-optimal actions many times in a row for arbitrarily large times (see Figure 14.1.1).

Although many learning algorithms for multi-armed bandits exist today, over a single run,
their first order regret seems to follow one out of two tendencies. The first order regret of
classical algorithms can be classified into two categories: smooth and bumpy.

14.1 Smooth and bumpy pseudo-regret curves

About notations. This chapter is dedicated to stochastic bandits, a setting that is
slightly different from Markov decision processes. We slightly modify the notations
of the manuscript to adopt a style that is closer to the multi-armed bandits’ standards.

We start by adapting notations.
A stochastic multi-armed bandit is a state-less Markov decision process, meaning that the

pair space can be put in the form Z := {1} × {1, . . . , K} where K denotes the number of arms of
the bandit. The actions picked by the learner are written A1, A2, . . . and the achieved rewards
R1, R2, . . .. Again, the objective of the learner is to maximize the aggregate rewards

∑T
t=1 Rt ,

or equivalently to minimize the regret. In the sequel, we focus on two-armed bandits with
Bernoulli rewards which is arguably the simplest settings of all, yet this setting is already
a rich ground to study the local behavior of efficient learners. This results below can easily
be generalized to multi-armed bandits (more than two) with single parameter exponential
distributions for rewards. We use the style of notation of Honda and Takemura (2015). The
distribution of arm a is denoted Fa, is a Bernoulli distribution Fa = B(µa) where µa is the mean
of the arm. We denote PF(−) and EF[−] the associated probability and expectation operators,
and whenever the distributions on arm are clear in the context, the subscript F is dropped;
Remark that F accounts for what we previously wrote M in the manuscript. We further assume,
up to permutations of arms, that 0< µ2 < µ1 < 1, thus both arms have interior mean rewards,
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arm 1 is optimal and arm 2 is suboptimal. Symbolically, we have g∗(M) = µ1 hence the regret
is Reg(T ) := Tµ1 −

∑T
t=1 Rt . In the multi-armed bandit literature, the first order regret is rather

called the pseudo-regret:

Tµ1 −
T
∑

t=1

µAt
(IV.1)

and the mean arm gap∆ := µ1−µ2 is the Bellman gap of action 2. During a run of an algorithm
and for every arm a = 1, 2, we keep track of the number of visits with Na(t) :=

∑t−1
i=1 1(Ai = a).

We will have Sa,n and µ̂a,n denote the number of successes (when the reward equals one) and
empirical mean of arm a after n draws of it. Sa(t) := Sa,Na(t) and µ̂a(t) := µ̂a,Na(t) will denote
the associated number of successes and empirical mean at time t.

The multi-armed bandit problem consists in the design of regret efficient algorithms for
multi-armed bandits and is simply a reinforcement learning problem on an average reward
Markov decision with a single state. The whole discussion of 2 is therefore perfectly suited
for this setting as well – this is not the first time of the manuscript that multi-armed bandits
are mentioned. In the stochastic setting, three formulations coexist: the minimax formulation
(Section 2.3), the model dependent formulation (Section 2.4) and the Bayesian formulation.
Despite being my favorite, the latter was entirely skipped in this manuscript but the reader can
read the very well-written and pretty complete introduction of (Lattimore and Szepesvári, 2020,
§34-36) to the subject. The local regret considerations of this chapters are model dependent
in nature, hence we will focus on the model dependent setting. Lower bounds of achievable
expected regret are known (see Lai and Robbins (1985) and Section 2.4) and achieved by
multiple methods, for example Thompson Sampling (Kaufmann et al. (2012)), MED (Honda and
Takemura (2010)), IMED (Honda and Takemura (2015)), KLUCB (Garivier and Cappé (2011);
Maillard et al. (2011)) or MOSS (Audibert et al. (2009)).
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Figure 14.1.1: Typical one-shot pseudo-regret of UCB (left) and Thompson Sampling (right).
The model is a two-armed bandit with Bernoulli rewards B(0.85), B(0.8).

When applied to real-world tasks, what usually matters is the performance over a single
run. Yet, although many of the previously mentioned methods are asymptotically optimal in
expectation, their trajectory behaviors differ significatively. This is illustrated in Figure 14.1.1,
plotting the typical pseudo-regrets of two popular algorithms: UCB by Auer (2002) and Thompson
Sampling (TS) by Thompson (1933).

The difference is striking.
UCB has bumpy pseudo-regret and alternates between periods of time when it pulls the best

and a suboptimal arm, meaning that it repeatedly pulls a bad arm several times in a row. In
opposition, the pseudo-regret of Thompson Sampling is smooth and the algorithm seems to
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pull suboptimal arms sporadically over time. These two trajectory portraits are in fact the two
representatives of most existing algorithms for stochastic bandits. UCB showcases the typical
one-shot pseudo-regret of index policies while TS illustrates the ones of randomized policies.

Outline of the chapter. The goal is the chapter is to explain the phenomenon reported in
Figure 14.1.1. To simplify the discussion, the results are established for two-arm Bernoulli
bandits. To measure the asymptotic bumpiness of the pseudo-regret is introduced the sliding
regret (Definition IV.7), given by the worst pseudo-regret on time-windows of fixed length sliding
to infinity; It is stronger than the previous introduced regret of exploration (Definition IV.2)
because it covers the asymptotic time horizon continuously. Our first result, Theorem IV.24,
provides a general condition to guarantee that a given policy have small sliding regret, later
used to show that Thompson Sampling and MED have optimal sliding regret. Our second result,
Theorem IV.37, states that all index policies have linear sliding regret provided that the index
meets some regularity conditions. An index policy (see (Lattimore and Szepesvári, 2020, 35.4))
is an algorithm that, out of its current observations, associates a real-valued index to each arm
then picks the arm with maximal index. Our result covers all classical index policies in the
literature, such as UCB (Auer (2002)), UCB-V (Audibert et al. (2009)), MOSS (Audibert and
Bubeck (2009)), KLUCB (Garivier and Cappé (2011); Maillard et al. (2011)), IMED (Honda and
Takemura (2015)) as well as their variants.

The study of the sliding regret of index policies indicates that such algorithms have a tendency
to pick suboptimal arms several times in a row at exploration episodes. What happens at these
critical time-instants is what makes the sliding regret of index policies linear, as the probability
to pick a suboptimal arm T times in a row starting from an exploration episode t is positive and
does not vanish with t. We further show that this behavior is not negligible in average, because
the regret of exploration (Definition IV.2) is shown to be optimal for Thompson Sampling and
MED but sub-optimal for classical index policies.

14.2 Sliding regret and behavioral robustness to local histo-
ries

The presence of bumps observed in Figure 14.1.1 is related to the slope of the pseudo-regret,
which is given by the pseudo-regret difference between two points in time. This consists in its
truncation to a given time-window. Accordingly, to study the local behavior of the pseudo-regret,
we study its truncation to time-windows of fixed length sliding to infinity.

Definition IV.7. The asymptotic sliding regret (or sliding regret for short) is given by

SliReg(T ) := lim sup
t→∞

�

Tµ∗ −
T
∑

i=1

µAt+i

�

. (IV.2)

Informally, the sliding regret measures the worst local pseudo regret over the trajectory. It
is a non-negative quantity that measures the presence and the amplitude of the local changes
of the pseudo-regret in the asymptotic regime. It is a new learning metric and as we will see,
no-regret algorithms in the literature present two tendencies: those with small sliding regret and
high sliding regret, embodied by Thompson Sampling and UCB respectively. The sliding regret
can easily be lower and upper bounded by ∆∗ := µ1 −µ2 and T∆∗ = T (µ1 −µ2), as shown by
the proposition below.
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Proposition IV.23. Consider an algorithm that, for all distribution on arms, have sublinear
expected regret. Then it has sliding regret bounded as:

µ1 −µ2 ≤ SliReg(T )≤ T (µ1 −µ2). (IV.3)

This is a direct consequence of Proposition 14.A.1, established in Section 14.A.
There is a world between the lower and the upper bound and yet, the lower bound is usually

achieved with randomized methods (such as TS) while the upper bound is reached with index
policies (such as UCB). But associating small sliding regret guarantees with randomization is
slightly misleading; this is rather a question of how the policy behaves depending on its recent
history.

14.2.1 Behavioral robustness to local histories

In this section, we provide a general condition to obtain time independent upper bounds on the
sliding regret with Theorem IV.24. This theorem states that if, regardless of the recent history
(e.g., a bad arm has been pulled), the probability of picking a suboptimal action remains small,
then the sliding regret is small. This is the property that we refer to as the behavioral robustness
to local histories. It is precisely the property that UCB does not satisfy and that will lead to
suboptimal sliding regret later on.

Theorem IV.24. Let π a policy such that there exists a sequence of events (Et : t ≥ 1) with
P(∃t,∀s ≥ T : Es) = 1, that satisfies:

∃d > 0,∀i ≥ 1 : P(At+i ̸= 1|Ht:t+i, Et) = O
�

1
td

�

(IV.4)

where Ht:t+i is the truncated history (At+ j, Rt+ j)0≤ j<i. Then SliReg(π; T )≤ ⌊ 1
d ⌋(µ1 −µ2).

Proof. Let n> 1
d an integer. We show that P(∀t,∃s ≥ t : Reg(s; s+T )≥ n(µ1−µ2)) = 0. Remark

that if Reg(s; s + T) ≥ n(µ1 − µ2), there exists a set I ⊆ {0, . . . , T − 1} of size n such that, for
all i ∈ I , As+i = 2. Denote Λn the collection of subsets of {0, . . . , T − 1} of size n and fix I ∈ Λn
whose elements are denoted i1 < i2 < . . .< in. We have:

P(∀i ∈ I , At+i = 2; Et) = P(At+in = 2 | Et , (∀i ∈ I \ {in}, At+i = 2))P(∀i ∈ I \ {in}, At+i = 2; Et)

= O
�

1
td

�

· P(∀i ∈ I \ {in}, At+i = 2; Et)

= . . .

= O
�

1
tnd

�

P(Et) = O
�

1
tnd

�

.

Because Es satisfies P(lim inf Es) = 1, check that for all sequence of events (Fs), P(∀t,∃s ≥ t :
Fs) = P(∀t,∃s ≥ t : Es, Fs). We complete the proof with:

P(∀t,∃s ≥ t : Reg(s; s+ T )≥ n(µ1 −µ2)) = lim
t→∞

P(∃s ≥ t : Reg(s; s+ T )≥ n(µ1 −µ2))

= lim
t→∞

P(∃s ≥ t : Reg(s; s+ T )≥ n(µ1 −µ2), Es)

≤ lim
t→∞

∑

s≥t

P(Reg(s; s+ T )≥ n(µ1 −µ2), Es)

≤ lim
t→∞

∑

s≥t

P(∃I ∈ Λn,∀i ∈ I : As+i = 2; Es)
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≤ lim
t→∞

∑

s≥t

T n O
�

1
snd

�

= 0

because nd > 1. So SliReg(T )≤ (n− 1)(µ1 −µ2).

In order to apply the theorem, one has to find the right sequence of events Et such that (IV.4)
is satisfied. This event usually characterizes what we will refer to as the asymptotic regime of
an algorithm, consisting in concentration guarantees for the empirical data of the algorithm as
well as convergence of the visit rate of the suboptimal arm. A complete example is provided
with Thompson Sampling.

14.2.2 Application: Thompson Sampling

Thompson sampling (TS) Thompson (1933) is a Bayesian algorithm that, at time t, samples
estimates of the arms’ values from its posterior distribution and picks the arm with highest
estimate. In the chosen Bernoulli setting, when the initial prior of TS is a tensor product of
uniform distributions over [0,1], the posteriors are Beta distributions and TS’s estimates are
sampled as:

θa(t)∼ Beta(1+ Sa(t), 1+ Na(t)− Sa(t)). (IV.5)

The expected regret of TS is pretty well understood. In the frequentist formulation of the
multi-armed bandit problem, the regret is O(log(T)) (Agrawal and Goyal (2012)) and the
multiplicative coefficient is the best possible, making TS an asymptotically optimal algorithm,
see Agrawal and Goyal (2012); Kaufmann et al. (2012); Accordingly, TS achieves the model
dependent lower bound of Lai and Robbins (1985) (Theorem I.15). We additionally show that
its sliding regret is optimal.

Theorem IV.25. Thompson Sampling has optimal sliding regret SliReg(TS; T ) = µ1 −µ2.

The complete proof is pretty tedious and deferred to the appendix. We outline the proof
below.

Proof sketch of Theorem IV.25. The goal is to invoke Theorem IV.24, and this is achieved by
characterizing the asymptotic behavior of TS, consisting in estimates of the sampling rates
P(At = a) of the algorithm, estimates of the visit rates Na(t) as well as convergence of its
empirical data.

Because the expected regret is sublinear, all arms are visited infinitely often, hence posteriors
concentrate around the true means µ1,µ2, meaning that µ̂a(t) eventually converges to µa
for a = 1,2. A second known property of the asymptotic regime is that for some b > 0,
∑

P(N1(t)≤ t b)<∞, see (Kaufmann et al., 2012, Proposition 1). So by Borel-Cantelli’s lemma,
P(lim inf(N1(t) > t b)) = 1. Together with a combination of the Beta-Bernoulli trick (Agrawal
and Goyal (2012)) and Sanov’ Theorem, the sampling rates of Thompson Sampling are bounded
as follows: For all ε > 0, there exists a sequence of events (Fεt ) with P(lim inf Fεt ) = 1 such that

e−(1+c(ε))N2(t)kl(µ2,µ1) ≤ P(At = 2 | Fεt )≤ e−(1−c(ε))N2(t)kl(µ2,µ1), (IV.6)

where c(ε) is a o(1) when ε vanishes. We use (IV.6) to show that N2(t) ∼ log(t)/kl(µ2,µ1).
More precisely, we show that for all ε > 0, the event

Eεt := (∀a, |µ̂a(t)−µa|< ε)∩
�

|N2(t)−
log(t)

kl(µ2,µ1)
|< ε · log(t)

kl(µ2,µ1)

�
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holds eventually (the limit inferior is almost-sure). On this event and relying on (IV.6), we
establish that

P(At = 2 | Eεt , Ht:t+i) = O
�

t
−1+ o

ε→0
(1)�

.

Applying Theorem IV.24, we obtain SliReg(T) ≤ ⌊ 1
1+o(1)⌋(µ1 − µ2). Making ε go to zero, we

obtain optimal sliding regret guarantees for TS.

14.2.3 Application: MED
MED (Honda and Takemura (2010)) is a randomized algorithm that, at time t, samples the
arm a with probability proportional to exp(−Na(t)kl(µ̂a(t), µ̂∗(t))). MED is known to have
asymptotically optimal expected regret (refer to the original paper). As the empirical estimates
converge, the sampling rate of the arm a = 2 is approximately exp(−N2(t)kl(µ2,µ1)), which is
essentially the same as Thompson Sampling’s in the asymptotic regime. Therefore, the analysis
of its sliding regret is similar to Thompson Sampling’s.

Theorem IV.26. MED has optimal sliding regret SliReg(MED; T ) = µ1 −µ2.

14.3 The bumpy regret of UCB
In this section, we show that unlike TS and MED, UCB does not have good sliding regret guaran-
tees. In fact, the sliding regret of UCB is the worst possible as shown with Theorem IV.29.

The UCB algorithm from Auer (2002) is an index algorithm rooted in the optimism-in-face-
of-uncertainty principle, that can be traced back at least to Lai and Robbins (1985). At time t, it
picks the arm maximizing the index

µ̂a(t) +

√

√2 log(t)
Na(t)

(IV.7)

which is +∞ if Na(t) = 0 by convention. Expected regret guarantees in O(log(T )) can be found
in the original paper. This algorithm is the basis of all EVI-based algorithms (Algorithm II.2)
and has been thoroughly investigated. This is why, to build intuition on how index algorithms
typically behave, we dedicate this section to the analysis of the almost sure regime of UCB.

Thankfully, the almost-sure behavior of UCB at infinity is well-behaved and easy to describe.
Eventually µ̂a(t) converges to µa and the visit rates of arms are such that the index of both arms
(IV.7) are approximately equal. In fact, N1(t)∼ t and N2(t)∼

2
(µ1−µ2)2

log(t) when time goes to
infinity, see Proposition IV.27.

Proposition IV.27. For all ε > 0 and when running UCB, both of the following hold:

(1) P(∃t,∀s ≥ t : ∀a, |µa(s)−µa(s)|< ε) = 1;

(2) P
�

∃t,∀s ≥ t :
�

�

�N2(t)− 2
�

1
µ1−µ2

�2
log(t)

�

�

�< ε · 2
�

1
µ1−µ2

�2
log(t)

�

= 1.

The proof of Proposition IV.27 is provided in Section 14.C.

14.3.1 The sliding regret of UCB
The analysis is driven by the behavior observed in Figure 14.1.1. UCB pulls every arm infinitely
often, and every time it does pick the suboptimal arm, the probability that it picks it again in the
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next round is high. Intuitively speaking, this happens because when UCB picks the suboptimal
arm a = 2 and receives full reward Rt = 1, the empirical estimate µ̂2(t) increases enough so
that UCB “thinks” that it has been sub-sampled. In other words, in the asymptotic regime of
UCB, if a suboptimal arm provides promising rewards, UCB will keep pulling it to “make sure”
that this arm’s estimate is not wrongly estimated. This means that the central condition of
Theorem IV.24 is not met by UCB. The time instants when UCB starts pulling suboptimal arms
are called exploration episodes, and corresponds to the exploration times introduced by
Definition IV.1, and are formally given by the increasing sequence of stopping times:

τ1 := inf{t : At = 2}, τk+1 := inf{t > τk : At = 2∧ At−1 = 1}. (IV.8)

Since all arms are pulled infinitely often, all these are almost surely finite.

Lemma IV.28. Consider running UCB, and fix T > 0. There exists a sequence of events indexed
by exploration episodes (Eτk

) with P(lim infk Eτk
) = 1, such that, for all sequence (Ut : t ≥ 1) of

σ(Ht)-measurable events:

P
�

∀i < T : Aτk+i = 2 | Eτk
, Uτk

�

≥ µT
2 .

The additional sequence (Ut) informs that the above lower bound is resilient to pollution of
the history, and we could also write P(∀i < T : Aτk+i = 2|Eτk

, Hτk
)≥ µT

2 . The event Eτk
is mostly

about the concentrations of empirical means µ̂a(t) and of visit rates, given by Proposition IV.27.
The main line of the proof is to estimate the evolution of UCB’s index (IV.7) with respect to
µ̂a(t), t and Na(t) for a = 1, 2, and to show that UCB keeps picking the suboptimal arm while it
provides optimal reward. It follows that the sliding regret is linear.

Theorem IV.29. UCB has the worst possible sliding regret SliReg(T ) = T (µ1 −µ2).

Proof. Since τk+T > τk + 2T , the events (∃i < T : Aτk+i ̸= 2) and (∃i < T : Aτk+T
≠ 2) do not

overlap. Denote FτℓT := (∃i < T : AτℓT+i ≠ 2) and let Eτk
the event given by Lemma IV.28 for a

fixed ε < µ2. Observe that P(∀ℓ≥ k : EτℓT ∩ FτℓT ) can be put in the form:
∏

ℓ≥k

P
�

∃i < T : AτℓT+i ̸= 2 | EτℓT , Uτ(ℓ−1)T+T

�

P
�

EτℓT | Uτ(ℓ−1)T+T

�

where Uτ(ℓ−1)T+T :=
⋂

m≤ℓ−1(EτmT
∩FτmT

) is aσ(Hτ(ℓ−1)T+T )-measurable event. Applying Lemma IV.28,
we obtain:

P(∀ℓ≥ k : EτℓT ∩ FτℓT )≤
∏

ℓ≥k

�

1− (µ2 − ε)T
�

= 0.

It follows that:

P(∀l ≥ k : FτℓT )≤ P
�

∀l ≥ k : (EτℓT )
∁
�

+ P(∀ℓ≥ k : EτℓT ∩ FτℓT ) = P
�

∀l ≥ k : (EτℓT )
∁
�

.

But since P(lim infk EτkT
) = 1, the above RHS goes to zero as k →∞. Therefore, we obtain

P(∀k,∃ℓ≥ k : ∀i < T, Aτℓ+i = 2) = 1, proving SliReg(UCB; T ) = T (µ1 −µ2).

With the same proof techniques than Lemma IV.28, the above result can be further refined.
When UCB receives full reward from the suboptimal arm, the associated index increases sig-
nificatively so that, not only UCB will pick the suboptimal arm again in the next round, but it
will also pick it in the next round, independently of the observed reward. Roughly speaking, if
UCB receives many promising rewards in a row for the suboptimal arm, the associated index
is polluted and UCB will blindly pick it again many times in succession, independently of the
feedback.
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Proposition IV.30. Fix T > 0 and assume that we are running UCB. There exists an
increasing sequence of almost-surely finite stopping times (σk : k ≥ 1) s.t.,

P(Reg(σk;σk + T )≥ (µ1 −µ2)T ) = 1.

For the construction of (σk), refer to Section 14.C.3.
Regarding Lemma IV.28, the lower bound of for P(∀i < T : Aτk+i = 2) is decreasing

exponentially fast with T . Even though Theorem IV.29 states that the pseudo-regret of UCB
makes arbitrarily large jumps infinitely often, how rare are these large jumps? While it is known
that the infinite monkey eventually writes the complete works of William Shakespeare, the
expected time that the animal requires to eventually write the first sentence of Romeo and Juliet
is stupidly large.

14.3.2 The regret of exploration of UCB
If UCB has a tendency to pick the suboptimal arm many times at exploration episodes (τk : k ≥ 1),
see (IV.8), how significant is this tendency? We now investigate the expected regret starting
from τk using the regret of exploration (Definition IV.2). In multi-armed bandits, the regret of
exploration can equivalently be written as follows.

Definition IV.8. The regret of exploration of an algorithm is the quantity:

RegExp(T ) := limsup
k→∞

E[Reg(τk;τk + T )]. (IV.9)

As soon as an algorithm visits every arm infinitely often (e.g., if consistent), the regret
of exploration is well-defined, although the notion of exploration episode is less natural for
randomized algorithms such as TS or MED than it is for index algorithms like UCB. The regret of
exploration is an alternative measure to the sliding regret, also quantifying the tendency of an
algorithm to aggregate suboptimal play. The two are linked as follows.

Proposition IV.31. For every consistent algorithm, RegExp(T )≤ E[SliReg(T )].

Proof. Since τk < τk+1, we have τk ≥ k. Therefore:

RegExp(T ) := inf
k

sup
ℓ≥k

E[Reg(τℓ;τℓ + T )]≤ inf
t

sup
s≥t

E[Reg(s; s+ T )]

≤ inf
t

E
�

sup
s≥t

Reg(s; s+ T )
�

.

By definition, Reg(s; s + T) ∈ [0, T(µ1 − µ2)] almost surely, so is bounded. By the Bounded
Convergence Theorem, inft E

�

sups≥t Reg(s; s+ T )
�

= E[inft sups≥t Reg(s; s + T)]. We readily
obtain: RegExp(T )≤ E[SliReg(T )].

Combined with Theorem IV.25, this shows that Thompson Sampling has optimal regret of
exploration. The same goes for MED, since MED also has sliding regret µ1 −µ2.

Corollary IV.32. Thompson Sampling and MED have optimal regret of exploration, that is,
for π= TS or MED, RegExp(π; T ) = µ1 −µ2.
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Figure 14.3.1: The approximate of t 7→ RegExp′(t; 100) for UCB and TS executed on the
two-arm bandit (B(0.9), B(0.8)), averaged over 10k runs, with W = 200 (see below).

The regret of exploration of UCB is shown to be lower bounded by C(T)(µ1 − µ2) where
C(T) is bounded away from 1. We show that at exploration episodes and in the asymptotic
regime, UCB behaves like a random walk with a negative drift, and that the regret exploration is
related to the reaching time to R−. The proof is found in Section 14.C.4.

Theorem IV.33. Let (X t : t ≥ 1) a sequence of i.i.d. random variables with distribution
B(µ2). Let σT the stopping time T ∧ inf

�

t ≥ 1 : −µ1−µ2
2 + 1

t

∑t
i=1(X t −µ2)≤ 0

	

. For all
T ≥ 1, we have RegExp(UCB; T )≥ (µ1 −µ2)E[σT ].

How tight is this result? How close is E[Reg(τk;τk + T)] to (µ1 − µ2)E[σT ] in practice?
To proceed, we estimate as a function of t the expected regret at exploration episodes near
t, consisting in RegExp′(t; T) := E[Reg(t; t + T)|∃k, t = τk]. To estimate this function, we
repeatedly run the algorithm to obtain a family S of samples of (τk, Reg(τk;τk + T)). Then,
we approximate RegExp′(t; T ) as the averages of y for (x , y) ∈ S such that |x − t|<W where
W is a parameter of the approximation. As shown in Figure 14.3.1, we indeed confirm that in
practice, the expected regret during an exploration episode seems to converge to the anticipated
lower bound (µ1 −µ2)E[σT ] reasonably quickly.

14.4 General index algorithms

The behavior reported in Figure 14.1.1 and analyzed in the previous section is not specific to
UCB. In this section, we generalize the analysis of UCB to most index policies of the literature.
We provide a set of conditions under which an index policy has linear sliding regret, see
Theorem IV.37. My original paper Boone (2023), from which this chapter is adapted, provides a
collection of conditions that an algorithm have to satisfy in order to generalize the proof of UCB;
Actually, this whole section is nothing less than a heavy abstractification of the proof techniques
of Section 14.3 and perhaps fails to properly convey the general intuition.

The general intuition is that, ignoring second order terms, all index algorithms I know of
Audibert and Bubeck (2009); Audibert et al. (2009); Auer (2002); Garivier and Cappé (2011);
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Algorithm Original Index Reworked index Imax

UCB µ̂a(t) +
r

2 log(t)
Na(t)

- ∞

MOSS µ̂a(t) +
r

log(t/KNa(t))
Na(t)

- ∞
KLUCB max{µ : Na(t)kl(µ̂a(t),µ)≤ log(t)} - 1
IMED −Na(t)kl(µ̂a(t), µ̂∗(t))− log Na(t)

log(t)
Na(t)kl(µ̂a(t),µ̂∗(t))+log Na(t)

∞

Table 14.4.1: Examples of indexes.

Honda and Takemura (2015); Lattimore (2018); Maillard et al. (2011); Thompson (1933)
(in)directly track a statistical lower bound. UCB, MOSS and AdaUCB track the lower-bound for
Gaussian distributions, KLUCB and IMED track the lower bound for general distributions, UCB-V
track the lower-bound for exponential distributions. Morally, these lower bounds are strongly
convex in the arms’ means hence when sampling a sub-optimal arm a and obtaining a very good
reward, the required visit count of a estimated from the empirical data increases by strictly more
than 1, hence the algorithm believes that a is sub-visited and will pull the arm right away.

The theory below arguably applies to a broader class of index policies – but the class of index
policies that do not follow a lower bound is not populated.

14.4.1 Index policies and generalizing UCB’s analysis

An index policy is an algorithm that, out of past observations, associates to every arm a numerical
value called the index of the arm, and pulls the arm with maximal index. In the sequel, we
consider indexes of the form

I(µ̂a(t), µ̂−a(t), Na(t), t) ∈ [0, Imax] (IV.10)

where Imax ∈ (0,+∞] is the maximal value that the index can reach (possibly infinite), µ̂a(t)
the empirical value of the considered arm, µ̂−a(t) the collection of the empirical values of other
arms, Na(t) the current number of visits of the arm and t the time. Accordingly, at time t,
the algorithm picks At ∈ argmaxa I(µ̂a(t), µ̂−a(t), Na(t), t). Remark that the ordering of µ̂a(t)
and µ̂−a(t) is important because I(µ̂1(t), µ̂2(t), N1(t), t) refers to the index of arm a = 1 while
I(µ̂2(t), µ̂1(t), N2(t), t) refers to the index of arm a = 2; we will write Ia(t) and Ia(µ̂(t), Na(t), t)
for simplicity.

Our goal is to generalize Theorem IV.29 and Theorem IV.33 to general index policies. Our
final result is summarized with Theorem IV.37. Of course, it is impossible to grasp all index
policies within a single result, so the index has to meet regularity conditions for our result to be
applicable. We design a set of nine conditions (A 1-9). All of them are met by classical existing
indexes.

The argument mostly follows the lines of UCB’s; Hence the question is whether what are the
properties that I(−) must satisfy so that the ideas behind the local analysis of UCB still applies.
The steps are as follows: (1) all arms are visited infinitely often; (2) visit rates converge; (3) at
the asymptotic regime, if a draw of the bad arm yields maximal reward, it will be drawn again
immediately; and (4) the third property is enough so that the index algorithm is subjected to
poisoning. By poisoning, we mean that if the bad arm provides maximal reward several times
in a row, then whatever happens thereafter, the algorithm will keep picking the bad arm a few
times in a row.
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14.4.2 Asymptotic regimes of algorithms

Most of the regularity conditions that we require on I(−) can be expressed in terms of continuity
with respect to the topology of coordinate-wise equivalence of sequences. This topology appears
naturally. As times goes on, one may expect that (µ̂1(t), µ̂2(t), N1(t), N2(t)) gets closer an closer
to (µ1,µ2, n1(t), n2(t)) where n1(t) and n2(t) are the deterministic visit rates of arms. In order
to approximate I(µ̂2(t), µ̂1(t), N2(t), t) by I(µ2,µ1, n2(t), t) for instance, we need I(−) to act
continuously on equivalent sequences.

Definition IV.9 (Asymptotic Topology). Consider a sequence (x1(n), . . . , xd(n)) of Rd . A
set U ⊆ N→ Rd is said open at x if there exists ε > 0 such that it contains all y : N→ Rd

satisfying:
∃N ,∀n> N ,∀i : |x i(n)− yi(n)|< ε|x i(n)|.

This topology that we obtain is the topology of coordinate-wise equivalence of sequences. For
instance, if d = 1, we have x(n)∼ y(n) if, and only if y belongs to all the neighborhoods of
x; Hence we write x ∼ y if y belongs to every neighborhood of x From now on, we endow
the set of sequences of Rd with this topology.

Regarding the literature, it is fairly reasonable to have an index satisfying the following
properties. (1) Monotonicity: the index is increasing in µa, decreasing in µ−a, decreasing in
Na and increasing in t. (2) Unplayed arms see their index growing enough so that all arms are
pulled infinitely often. (3) Convergence: an arm which is being pulled linearly often (e.g., an
optimal arm) have converging index. Most index algorithms in the literature can be reworked
so that these properties are satisfied, see Table 14.4.1.

Assumptions 1. The first required set of assumptions is the following.

(A 1) (Monotonicity) The index Ia(−) is increasing in µa, decreasing in µ−a, decreasing in Na and
increasing in t.

(A 2) (Diverging in t) For all fixed n≥ 1 and ν2 ∈ [0, 1], in the neighborhood of (ν2,µ1, n, t), we
have I2(t)→ Imax.

(A 3) (Convergence) In the neighborhood of (µ1,µ2, t, t), I1(t) converges to some positive
I(µ1,µ2)< Imax.

Lemma IV.34. Assume that I(−) satisfies (A 1-3). Then, for a = 1,2, µ̂a(t)→ µa a.s.

Equivalently, t 7→ (µ̂1(t), µ̂2(t)) is in every neighborhood of t 7→ (µ1,µ2), i.e., the two
sequences are topologically indistinguishable. In practice, when running UCB, or KLUCB or
IMED, the arms’ numbers of visits are such that all indexes are equal. Because the index of
the optimal arm converges to I(µ1,µ2), N2(t) must be such that I(µ̂2(t), µ̂1(t), N2(t), t) is
approximately I(µ1,µ2), and the inverse must be continuous in µ̂2(t), µ̂1(t), I(µ1,µ2). This
leads to the condition (A 4). It is completed with (A 5), stating that the derivative of the inverse
is not null. The two combined guarantee that N2(t)∼ n2(t) for some deterministic n2(t). The
last condition (A 6), which is a formulation of the no-regret property, makes sure that N1(t)∼ t
once N2(t)∼ n2(t).

Assumptions 2. Convergence of visit rates Na(t).

(A 4) (Continuous inverse in n) Denote fν1,ν2,x(t) := [I−1
2 (ν2,ν1,−, t)](x) the partial inverse

in the number of visits for arm a = 2 and let n2(t) := fµ1,µ2,I(µ1,µ2)(t). The map (t 7→
(ν1(t),ν2(t), x(t))) 7→ (t 7→ fν1(t),ν2(t),x(t)(t)) is continuous in a neighborhood of (µ1,µ2, I(µ1,µ2)).
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(A 5) (Asymptotic monotonicity in n) There is a non-negative definite function ℓ such that for
ε > 0 and in a neighborhood of t 7→ (µ1,µ2),

I(ν2,ν1, (1+ ε)n2(t), t)≤ (1− ℓ(ε))I(ν2,ν1, n2(t), t),

and similarly, I(ν2,ν1, (1− ε)n2(t), t)≥ (1+ ℓ(ε))I(ν2,ν1, n2(t), t).

(A 6) (No-Regret) n2(t) is sublinear in t, n2(t)→∞ and n2(t)∼ n2(at) (for all a > 0) when
t →∞.

Lemma IV.35. If I(−) satisfies (A 1-6), then (µ̂1(t), µ̂2(t), N1(t), N2(t)) ∼ (µ1,µ2, t, n2(t)) a.s.
The sequence t 7→ (µ1,µ2, t, n2(t)) will be called the asymptotic regime.

14.4.3 Local behavior in the asymptotic regime of index policies

To analyze the local evolution of indexes in the asymptotic regime, we assume that for every arm,
Ia(t + h)− Ia(t) can be approximated by its Taylor expansion, and that this Taylor expansion
depends continuously on the parameters µ̂a(t), Na(t) and t. This is expressed by (A 7). (A 9)
states that not all terms vary at the same speed; Namely, that the partial derivatives of I1(t) are
negligible, and that in the Taylor expansion of I2(t+h)− I2(t), the term ∂t I2(t) can be neglected.
Lastly, (A 8) states that the evolution of I2(t) relatively to N2(t) and µ̂2(t) are comparable, and
the evolution relatively to µ̂2(t) is large enough in front of the one relatively to N2(t). This
guarantees that if the suboptimal arm a = 2 is pulled and yield maximal reward Rt = 1, it will
be pulled in the next round.

Assumptions 3. Local properties of Ia(t) in the asymptotic regime.

(A 7) (Taylor expansion) In a neighborhood of the asymptotic regime (say (ν1,ν2, m1, m2) in a
neighborhood of (µ1,µ2, n1, n2)), for all fixed h≥ 1 and all arm a, we have:

Ia(t + h)− Ia(t)∼ (νa(t + h)− νa(t)) · ∂µa
Ia(t)

+ (ν−a(t + h)− ν−a(t)) · ∂µ−a
Ia(t)

+ (ma(t + h)−ma(t)) · ∂n Ia(t)
+ h · ∂t Ia(t).

(A 8) (ρ-optimism condition) There is a constant ρ ∈ [0, 1), such that in a neighborhood of the
asymptotic regime, ∂n I2(t)∼ −

ρ(1−µ2)
m2(t)

∂µ2
I2(t).

(A 9) (Negligible derivatives) In a neighborhood of the asymptotic regime, both ∂t I1(t) and
∂t I2(t) are o(∂n I2(t)); And ∂µ2

I1(t) = o(∂µ2
I2(t)).

Lemma IV.36. Let I(−) an index satisfying (A 1-9). Fix T > 0. There exists a sequence of
events indexed by exploration episodes (Eτk

) with P(lim infk Eτk
) = 1, such that, for all sequence

(Ut : t ≥ 1) of σ(Ht)-measurable events:

P
�

∀i < T : Aτk+i = 2 | Eτk
, Uτk

�

≥ µT
2 .

Proof. By Lemma IV.35, we know that (µ̂1(t), µ̂2(t), N1(t), N2(t)) goes to the asymptotic regime
(µ1,µ2, t, n2(t)) almost surely, so (A 7-9) can be instantiated to the random quantities. Suppose
that t is large enough and is such that over the time-range {t, . . . , t + h− 1}, we have As = 2.
Then we can write:

(I2(t + h)− I1(t))− (I2(t)− I1(t))
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∼

∑h−1
i=0 (Rt+i −µ2)

N2(t)

�

∂µ2
I2(t)− ∂µ2

I1(t)
�

+ h∂n I2(t) + h(∂t I2(t)− ∂ I1(t)) (A 7)

∼

∑h−1
i=0 (Rt+i −µ2)

N/2(t)
∂µ2

I2(t) + h∂n I2(t) + h(∂t I2(t)− ∂ I1(t)) (A 9)

≳

∑h−1
i=0 (Rt+i −µ2)−ρ(1−µ2)h

N2(t)
∂µ2

I2(t) + h(∂t I2(t)− ∂ I1(t)). (A 8)

Assume that Rt+i = 1 for all i ∈ {0, . . . , h− 1}. We get

(I2(t + h)− I1(t))− (I2(t)− I1(t))≳
(1−ρ)(1−µ2)h

N2(t)
∂µ2

I2(t) + h(∂t I2(t)− ∂ I1(t))

∼
(1−ρ)(1−µ2)h

N2(t)
∂µ2

I2(t). (A 9)

Since At = 2, we have I2(t)− I1(t)≥ 0. By (A 1), ∂µ2
(I2(t))> 0 so I2(t+h)− I1(t+h)> 0, hence

At+h = 2. We have established that, in the asymptotic regime, if As = 2 for s ∈ {t, . . . , t + h− 1}
with Rs = 1, then At+h = 2 as well. This means that the index policy essentially behaves like
UCB: If the bad arm only yields optimal rewards, it is repeatedly pulled.

It means that Lemma IV.28 extends to general indexes satisfying (A 1-9). Therefore, and
with the same proof, so does Theorem IV.29: Index policies pull the bad arm for arbitrary long
time-window infinitely often. Theorem IV.33 also generalizes, and the regret of an index policy
at exploration episodes can be predicted. It locally behaves like a random walk. The accuracy of
the prediction is experimentally measured in Figure 14.3.1.

Theorem IV.37. Let I(−) an index satisfying (A 1-9). Then:

(1) Sliding Regret: SliReg(I ; T ) = (µ1 −µ2)T.

(2) Regret of Exploration: Let (X t : t ≥ 1) a sequence of i.i.d. random variables with
distribution B(µ2). Let σT := T ∧ inf

�

t ≥ 1 : −ρ(1−µ2) +
1
t

∑t
i=1(X t −µ2)≤ 0

	

.
We have RegExp(I ; T )≥ (µ1 −µ2)E[σT ].

14.4.4 Examples and experiments

Checking that an index satisfies the requirements (A 1-9) is mostly computations. Example 1
details the checking process for IMED. More examples are provided in Table 14.4.2.

Example 1 (IMED). IMED from Honda and Takemura (2015) picks the arm maximizing:

Ia(t) :=
log(t)

Na(t)kl(µ̂a(t), µ̂∗(t)) + log Na(t)
.

We have Imax = ∞, and (A 1-3) are obvious. When the arm a = 1 is pulled linearly often,
we have I1(t) = log(t)/log N1(t) ∼ 1, so I(µ1,µ2) = 1. We see that n2(t) := log(t)

kl(µ2,µ1)
, that

depends continuously on µ2,µ1 so that (A 4) is satisfied. (A 5-6) also immediately follow. The last
conditions are the ones that need more work, but they result from straight forward computations.
Asymptotically, for µ̂2 ≡ µ̂2(t)< µ̂1(t)≡ µ̂1, we get:

I1(t + h)− I1(t)∼
h
t
+

N1(t + h)− N1(t)
N1(t) log N1(t)

∼
h
t

,
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Algorithm Index n2(t) ∂µ2
I2 ∂n I2

UCB µ̂a(t) +
r

2 log(t)
Na(t)

2 log(t)
(µ1−µ2)2

1 −µ1−µ2
2n2(t)

MOSS µ̂a(t) +

s

log
�

t
2Na(t)

�

Na(t)
log(t)
(µ1−µ2)2

1 −µ1−µ2
2n2(t)

UCB-V µ̂a(t) +
r

2µ̂a(t)(1−µ̂a(t)) log(t)
Na(t)

+ 3c log(t)
Na(t)

2µ2(1−µ2)
(µ1−µ2)2

�

1+
r

1+ 6c(µ1−µ2)
µ2(1−µ2)

�2

log(t) (∗) (∗∗)

KLUCB max{µ : Na(t)kl(µ̂a(t),µ)≤ log(t)} log(t)
kl(µ2,µ1)

log
�

µ1(1−µ2)
µ2(1−µ1)

�

µ1−µ2
µ1(1−µ1)

− kl(µ2,µ1)
n2(t)

µ1−µ2
µ1(1−µ1)

IMED log(t)
Na(t)kl(µ̂a(t),µ̂∗(t))+log Na(t)

log(t)
kl(µ2,µ1)

log
�

µ1(1−µ2)
µ2(1−µ1)

�

kl(µ2,µ1)
− 1

n2(t)

Table 14.4.2: Examples of asymptotic regimes. The missing entries of UCB-V are (∗) ∂ µ2 I2 :=

1 + (1 − 2µ2)
r

log(t)
2n2(t)µ2(1−µ2)

and (∗∗) ∂n I2 := − log(t)
n2(t)

�
r

µ2(1−µ2) log(t)
2n2(t)

+ 6c log(t)
n2(t)

�

. In this array,

we can group algorithms in three families of algorithms with similar asymptotic regimes and
identical ratios n2(t)∂µ2

I2/∂n I2, known to account for the regret of exploration: UCB and MOSS,
UCB-V, KLUCB and IMED.

I2(t + h)− I2(t)∼
(µ̂2(t + h)− µ̂2(t)) log

�

µ̂1(1−µ̂2)
µ̂2(1−µ̂1)

�

kl(µ̂2, µ̂1)
−

N2(t + h)− N2(t)
log(t)

kl(µ̂2,µ̂1)

+
h

t log(t)
.

These two Taylor expansions are continuous in µ̂2 and µ̂1, so that (A 5) is satisfied. (A 9) follows
directly and (A 8) can be checked numerically. Following Theorem IV.37,

SliReg(IMED; T ) = (µ1 −µ2)T

and its regret of exploration can be predicted via the random walk specified in Theorem IV.37.2.

Example 2 (Experiments). We extend the experiment of Figure 14.3.1 to other index policies. We
estimate the function RegExp′(t; T ) := E[Reg(t; t + T )|∃k, t = τk] as a function of t. To estimate
this function, we repeatedly run the algorithm to obtain a family S of samples of (τk, Reg(τk;τk+T )).
Then, we approximate RegExp′(t; T) as the averages of y for (x , y) ∈ S such that |x − t| < W
where W is a parameter of the approximation. In the experiments, we take W = 128 and T = 100.

We overall observe a convergence to the predicted theoretical value (Theorem IV.37.2). Observing
the precise rate of convergence of RegExp′(t; T ) as a function of t is rather difficult, especially for
IMED and KLUCB, because these algorithms are very aggressive and rarely pick the suboptimal
arm, meaning that there a only a few exploration episodes during a run. The amount of data
required to accurately estimate the curve increases exponentially with t. Nonetheless, it seems that
RegExp′(t; T ) is slightly below the theoretical (µ1 −µ2)E[σT ] sometimes, see IMED for instance.
This is due to two things. First, although we eventually have |N2(t)− n2(t)| < εn2(t) with ε as
small as desired, for t = 10000, the correct ε may remain large. For instance, in IMED’s index,
the term log n2(t) cannot be neglected in front of n2(t)kl(µ2,µ1) even when t = 10000, implying
that N2(t) and n2(t) are of the same order but still a bit far away. Second, the analysis assumes
that the partial derivatives of the index stay approximately the same over [t; t + T], which is quite
imprecise when t isn’t large enough in front of T .

14.5 Future directions

The big take-away of this chapter is that the locally bad behavior of UCB, and more generally
index policies, is hard-coded in their design. By blindly allocating visits according to a lower
bound, they will have burst of sub-optimal play when this lower bound suddenly jumps and
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Figure 14.4.1: Estimated regret of exploration for various algorithms on the two-arm Bernoulli
bandit (B(0.9), B(0.8)). The performance of TS and UCB from Figure 14.3.1 are compared to
UCB-V, MOSS, IMED and KLUCB. The lower bound (dotted) of RegExp(−) is 0.1. The theoretical
value is reported to the right.
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requires for pulls of sub-optimal actions. By being randomized, or maybe lazy, methods such as
TS or MED are immune to this behavior.

Many things are still to be done.
First, a few results above are incomplete. For instance, Theorem IV.33 lower-bounds the

regret of exploration of UCB by a random walk. Is there equality? In Chapter 13, we have
presented a technique showing that RegExp(T) = O(log(T)) and this technique is probably
applicable to UCB, but the return time to R− of the random walk is more likely O(1) because of
the negative drift. I conjecture that, for UCB, RegExp(T) = O(1) and can be characterized by
the return time of the random walk of Theorem IV.33 up to a infinitesimal randomization of the
means µ1,µ2.

Second, a possible direction is to go even beyond the sliding regret. The motivation is EXP3
Auer et al. (1995). Not only the proof techniques presented in this chapter (Theorem IV.24 and
asymptotical regimes) fail to apply to EXP3, but its behavior seems unique. It sits in-between
the smooth behavior of TS and the bumpy behavior of UCB. Actually, the expected visit counts of
EXP3 seem to differ from their almost sure values that don’t even seem to exist in the first place,
meaning that EXP3 is heavily unstable. This is not that much of a surprise, because EXP3 has
been designed to tackle adversarial bandits. Yet, any attempt at understanding the behavior of
EXP3 is likely to introduce interesting proof techniques.

The third perspective is obviously to extend this work beyond stochastic bandits. While our
proofs can be adapted to cover multi-arm bandits with non-Bernoulli reward distributions, they
are specific to stochastic bandits. However, I believe that it is too early to pursue this direction.
First, the EVI-based algorithms cannot go beyond of regret of exploration guarantees because
of Proposition IV.30. Second, the literature of regret efficient algorithms in the model dependent
setting for average reward Markov decision processes is far from stabilized. The only algorithm
to achieve the lower bound is ECoE (Algorithm III.2), was born in the end of July 2024 and
has no implementable version yet, hence cannot be fairly called “an algorithm.” Of course,
the literature on recurrent models is a bit more stable and one may try to analyze IMED-RL
Pesquerel and Maillard (2022). However, especially regarding the minor structure of recurrent
models and Proposition III.8, recurrent models resemble bandits too much and nothing much
new is to discover there.



Appendix of Chapter 14

14.A Almost-sure properties of consistent algorithms

This section is dedicated to the proof of the following result.

Proposition 14.A.1. Consider a policy such that whatever the distributions F on arms, the
expected regret grows linearly, i.e., EF[Reg(T )] = o(T ). Then all arms are visited infinitely
often, that is, P(∀n,∃t : Na(t)≥ n) = 1.

Proof. (STEP 1) Assume on the contrary that, for some distributions F on arms and for some
arm a, PF(∀t : Na(t) < n) > 0 where n ≥ 1. Because the expected regret is sublinear, a
has to be suboptimal. Let F′ any distribution on arms making a the unique optimal arm,
and such that F(a′) = F′(a′) for all a′ ̸= a. Denote the likelihood-ratio of the observations
(A1, R1, . . . , At−1, Rt−1) as

Lt ≡ L(A1, R1, . . . , At−1, Rt−1) :=
∑

b

t−1
∑

s=1

1(As = b)
fb(Rs)
f ′b(Rs)

Denoting Ft := σ(A1, R1, . . . , At−1, Rt−1), it is known (see Kaufmann et al. 2016, Lemma 18)
that if E is a Ft -measurable event, then

PF′(E) = EF[1(E)exp(−Lt)].

(STEP 2) Because F is non-degenerate with 0 < µa < µ
∗ < 1, we can assume that µ′a < 1

and that there exists c > 0 such that for r ∈ {0, 1}, we have 1
c ≤ exp( fa(r)/ f ′a(r))≤ c. Then,

PF′(∀t : Na(t)< n) = lim
t→∞

PF′(Na(t)< n)

= lim
t→∞

EF

�

1(Na(t)< n)exp

�

−
∑

b

t−1
∑

s=1

1(As = b)
fb(Rs)
f ′b(Rs)

��

= lim
t→∞

EF

�

1(Na(t)< n)
t−1
∏

s=1

exp

�

−1(As = b)
fa(Rs)
f ′a(Rs)

�

�

≥ lim
t→∞

EF

�

1(Na(t)< n)
�

1
c

�Na(t)
�

≥ c−n > 0.

(STEP 3) Let ∆′ > 0 the gap between the optimal arm and the best suboptimal arm under
F′. We get

EF′[Na(T )]≤ nPF′(Na(T )< n) + TPF′(Na(T )≥ n)≤ n+ T (1− c−n).

262
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So:

EF′[Reg(T )]≥∆′(T − EF′[Na(T )])
≥∆′(c−nT − n) = Ω(T ).

This comes in contradiction with EF′[Reg(T )] = o(T ).

14.B Analysis of Thompson Sampling

14.B.1 Preliminaries: Sanov’s Theorem

Our analysis of Thompson Sampling relies on a quantitative version of Sanov’s Theorem.

Lemma 14.B.1 (Sanov’s Theorem). Let q ∈ (0,1) and (Xn : n ≥ 1) a family of i.i.d. random
variables with distribution B(q). Let Sn := X1 + . . . + Xn and denote Pq(Sn ∈ . . .) the induced
probability distribution. Then, for ε > 1

n ,

1
n+1 e−nkl(q−ε− 1

n ,q) ≤ Pq(Sn ≤ n(q− ε)) ≤ ne−nkl(q−ε,q), (14.B.1)
1

n+1 e−nkl(q+ε+ 1
n ,q) ≤ Pq(Sn ≥ n(q+ ε)) ≤ ne−nkl(q+ε,q). (14.B.2)

Proof. Naming these inequalities “Sanov’s Theorem” is a bit of an overstatement but is nonethe-
less very close to the original. The proof is classic, but we write it below for the paper to be
self-contained.

(STEP 1) We start by a combinatorial lemma. Write h(p) := −p log(p)− (1− p) log(1− p)
the Shannon entropy. For all n and k ∈ {0, . . . , n}, we have

enh( k
n)

n+ 1
≤
�

n
k

�

≤ enh( k
n).

To establish this, remark that 1=
∑

ℓ

�n
ℓ

�

( k
n)
ℓ(1− k

n)
n−ℓ. The term for ℓ= k is equal to e−nh(k/n).

In particular, we have 1≥
�n

k

�

e−nh(k/n), giving the upper bound above. But also, since the term
for ℓ= k is the largest of the sum, we get 1≤ (n+ 1)

�n
k

�

e−nh(k/n), leading to the lower bound.
(STEP 2) Let k ∈ {0, . . . , n}. We have

Pq(Sn = k) =
�

n
k

�

qk(1− q)n−k

=
�

n
k

�

�

q
k
n (1− q)1−

k
n

�n

=
�

n
k

�

e−nh( k
n) · e−nkl( k

n ,q).

We therefore obtain
e−nkl( k

n ,q)

n+ 1
≤ Pq(Sn = k)≤ e−nkl( k

n ,q).

(STEP 3) We establish the bounds for Pq(Sn ≤ n(q− ε)), see (14.B.1).

Pq(Sn ≤ n(q− ε)) =
⌊n(q−ε)⌋
∑

k=0

Pq(Sn = k).
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For the upper bound, remark that when over {0, . . . , ⌊n(q− ε)⌋}, the function k 7→ e−nkl( k
n ,q) is

decreasing, thus we get

Pq(Sn ≤ n(q− ε))≤ (n− ⌊n(q− ε)⌋)e−nkl
�

⌊n(q−ε)⌋
n ,q

�

≤ ne−n(kl(q−ε,q)).

Rearranging terms provides the upper bound part in Sanov’s Theorem. For the lower bound,
check that

Pq(Sn ≤ n(q− ε))≥
e−nkl

�

⌊n(q−ε)⌋
n ,q

�

n+ 1
≥

e−nkl(q−ε− 1
n ,q)

n+ 1
.

The bounds for Pq(Sn ≥ n(q+ ε)), see (14.B.2), are established similarly.

14.B.2 The almost-sure asymptotic behavior of Thompson Sampling

Starting from this section, we assume throughout that the bandit model is (B(µ1), B(µ2)) with
non-degenerate means 0< µ2 < µ1 < 1. We first bound the sampling rates of TS.

Lemma 14.B.2. There exist a positive definite function c : R+→ R and a family (nε : ε > 0) such
that for all ε > 0, there exists a sequence of events (Gεt ) with lim inf Gεt a.s., and such that:

e−N2(t)(1+c(ε))kl(µ2,µ1) ≤ E
�

1(At = 2) | Gεt , N2(t), N2(t)≥ nε
�

≤ e−N2(t)(1−c(ε))kl(µ2,µ1).

Proof. (STEP 1) Denote FBeta
α,β (respectively FBin

n,p ) the c.d.f. of a Beta distribution Beta(α,β) (re-
spectively a Binomial distribution Binom(n, p)). Using the Beta-Binomial trick and Lemma 14.B.1,
we obtain:

E[1(θa(t)≤ µ̂a(t)− ε) | µ̂a(t), Na(t)] = FBeta
1+Sa(t),1+Na(t)−Sa(t)

(µ̂a(t)− ε)
(∗)
= 1− FBin

Na(t)+1,µ̂a(t)−ε
(Sa(t))

(†)
≤ E

h

(Na(t) + 1)e−(Na(t)+1)kl
�

Sa(t)
Na(t)+1 ,µ̂a(t)−ε

�

| µ̂a(t), Na(t)
i

= (Na(t) + 1)e−(Na(t)+1)kl
�

Sa(t)
Na(t)+1 ,µ̂a(t)−ε

�

.

We can similarly derive a bound for 1(θa(t)≥ µ̂a(t) + ε), showing that:

E[1(θa(t)≥ µ̂a(t) + ε) | µ̂a(t), Na(t)]≥
e−(Na(t)+1)kl

�

Sa(t)
Na(t)+1 ,µ̂a(t)+ε

�

Na(t) + 2
.

where (∗) follows by Beta-Binomial Trick and (†) follows from Sanov’s Theorem (Lemma 14.B.1).
(STEP 2) Introduce the events Ft := (|µ̂1(t)− µ1| < ε/3) and Et := (N1(t) > t b) that are

such that both lim inf Ft and lim inf Et are almost-sure (see Kaufmann et al. 2012, Proposition 1
for Et). We have

P(∀t,∃s ≥ t : θ1(s)≤ µ1 − ε) = lim
t→∞

P
�

∃s ≥ t : θ1(s)≤ µ1 − ε, Fεs , Es

�

≤ lim
t→∞

∑

s≥t

P
�

θ1(s)≤ µ̂1(s)−
2ε
3 , Fεs , Es

�

≤ lim
t→∞

∑

s≥t

E
�

1(θ1(s)≤ µ̂1(s)−
2ε
3 ) | F

ε
s , Es, N1(s), µ̂1(s)

�

≤ lim
t→∞

∑

s≥t

(t b + 1)e−(t
b+1)kl

�

µ1−
ε
3 ,µ1−

2ε
3

�

= 0.
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Accordingly, P(∃t,∀s ≥ t : θ1(s) > µ1 − ε) = 1. Similarly one can show that P(∃t,∀s ≥ t :
θ1(s)< µ1 + ε) = 1.

(STEP 3) Following (STEP 2), we see that in the asymptotic regime, the suboptimal arm
a = 2 cannot be picked unless θ2(t)≥ µ1 − ε. And conversely, if θ2(t)≥ µ1 + ε, then arm 2 is
pulled. Introduce the asymptotically almost sure event:

Gεt := (|θ1(t)−µ1|< ε)∩ (|µ̂2(t)−µ2|< ε).

The probability to pick At = 2 conditionally on Gεt is bounded accordingly:

e−(N2(t)+1)kl(µ2−ε,µ1+ε)

N2(t) + 2
≤ E

�

1(At = 2) | Gεt , N2(t)
�

≤ (N2(t) + 1)e−(N2(t)+1)kl(µ2+ε,µ1−ε).

Therefore, there exists a positive definite function c(ε) such that, when N2(t) is large enough
relatively to ε, say N2(t)≥ nε, we have:

e−N2(t)(1+c(ε))kl(µ2,µ1) ≤ E
�

1(At = 2) | Gεt , N2(t), N2(t)≥ nε
�

≤ e−N2(t)(1−c(ε))kl(µ2,µ1),

establishing the claim.

The second result of this section provides a precise description of TS’s visit rates at infinity.
The visit rate of the suboptimal, N2(t), will be later called the asymptotic regime of TS.

Lemma 14.B.3. For all δ > 0,

P

�

∃t,∀s ≥ t :

�

�

�

�

N2(s)−
log(s)

kl(µ2,µ1)

�

�

�

�

≤ δ ·
log(s)

kl(µ2,µ1)

�

= 1.

Proof. Let δ > 0. Denote c ≡ c(ε) and k0 ≡ kl(µ2,µ1) for short, and choose ε small enough so
that 1

1+2c(ε) > 1−δ and 3c(ε)< δ.

(STEP 1) We show that the event (N2(t) ≥
log(t)
(1+2c)k0

) holds eventually. We proceed by

considering the complementary event and denote λt := log(t)
(1+2c)k0

. From Lemma 14.B.2 we also
know that

E
�

1(As ̸= 2) | Gεs , nε ≤ N2(s)≤ λt

�

≤ 1− e−
(1+c) log(t)

1+2c .

Denote Eεs := Gεs ∩ (nε ≤ N2(s)≤ λs) for short. Remark that if N2(s) < λs, then the arm a = 2
has been sampled less than λs times over [1

2s, s] with N2(u) < λs each time. Said differently,
there exists Λ a subset of [1

2s, s] with at least s
2 −λs elements (we write Λ ⊆s/2−λs

[1
2s, s]) such

that for all i ∈ Λ, Ai = 1. Therefore, where Fεj below is a shorthand for (A j = 1, N2( j)< λs, Eεj ),
we have:

P(∀t,∃s ≥ t : N2(s)< λs) = lim
t→∞

P(∃s ≥ t : N2(s)< λs)

≤ lim
t→∞

P
�

∃s ≥ t,∃Λ ⊆s/2−λs
[1

2s, s],∀i ∈ Λ : Ai = 1, N2(i)< λs

�

= lim
t→∞

P
�

∃s ≥ t,∃Λ ⊆s/2−λs
[1

2s, s],∀i ∈ Λ : Ai = 1, N2(i)< λs, Eεi
�

= lim
t→∞

∑

s≥t

∑

I⊆s/2−λs [
1
2 s,s]

∏

i∈I

P
�

Ai = 1, N2(i)< λs, Eεi | ∀ j < i ∈ I : Fεj
�

≤ lim
t→∞

∑

s≥t

∑

I⊆s/2−λs [
1
2 s,s]

∏

i∈I

P
�

Ai = 1 | N2(i)< λs, Eεi , (∀ j < i ∈ I : Fεj )
�

≤ lim
t→∞

∑

s≥t

∑

I⊆s/2−λs [
1
2 s,s]

�

1− e−
(1+c) log(t)

1+2c

�
t
2−

log(t)
(1+2c)k0
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≤ lim
t→∞

∑

s≥t

� t/2
log(t)
(1+2c)k0

�

�

1− e−
(1+c) log(t)

1+2c

�
t
2−

log(t)
(1+2c)k0 .

Using standard equivalents, the summand happens to be asymptotically upper bounded by

eC log2(t) · e−C t1− 1+c
1+2c ≲ e−C ′ t

c
1+2c

where C > C ′ > 0. This term has finite sum. We conclude has follows:

P
�

∀t,∃s ≥ t : N2(t)<
log(s)
(1+2c)k0

�

≤ lim
t→∞

∑

s≥t

e−C ′s c
1+2c = 0.

(STEP 2) We show that the event (N2(t)≤
(1+3c) log(t)

k0
) holds eventually. Again, we consider

the complementary event and denote λt := 1
k0

log(t). By Lemma 14.B.2,

E
�

1(As = 2) | Gεs , nε ≤ N2(s), (1+ 2c)λt < N2(s)
�

≤ e−(1+c−2c2) log(t).

Let Eεs := (Gεs )∩ (nε ≤ N2(s))∩ ((1+ 2c)λt < N2(s)) for short. Note that if N2(t)> (1+ 3c)λt ,
then it has been sampled at least cλt) times with N2(s) > (1 + 2c)λt over the time interval
[(1 + 2c)λt , t]. So, there exists Λ a subset of [(1 + 2c)λt , t] of size at most cλt (we write
Λ ⊆cλt

[(1 + 2c)λt , t]) such that for all i ∈ Λ, Ai = 2. Therefore, and where Fεj below is a
shorthand for (A j = 2, N2( j)> (1+ 2c)λ j, Eεj ), we have

(−) := P(∀t,∃s ≥ t : N2(s)> (1+ 3c)λs)
= lim

t→∞
P(∃s ≥ t : N2(s)> (1+ 3c)λs)

≤ lim
t→∞

P
�

∃s ≥ t,∃Λ ⊆cλs
[(1+ 2c)λs, s],∀i ∈ Λ : Ai = 2, N2(i)> (1+ 2c)λs

�

= lim
t→∞

P
�

∃s ≥ t,∃Λ ⊆cλs
[(1+ 2c)λs, s],∀i ∈ Λ : Ai = 2, N2(i)> (1+ 2c)λs, Eεi

�

= lim
t→∞

∑

s≥t

∑

I⊆cλs [(1+2c)λs,s]

∏

i∈I

P
�

Ai = 2, N2(i)> (1+ 2c)λs, Eεi | ∀ j < i ∈ I : Fεj
�

= lim
t→∞

∑

s≥t

∑

I⊆cλs [(1+2c)λs,s]

∏

i∈I

P
�

Ai = 2 | N2(i)> (1+ 2c)λs, Eεi , (∀ j < i ∈ I : Fεj )
�

≤ lim
t→∞

∑

s≥t

�

s
c log(s)

k0

�

e−(1+c−2c2) log(s)· c
k0

log(s).

Using standard equivalents, the summand is asymptotically upper bounded by

e
�

c
k0
+o(1)

�

log2(t) · e−(1+c−2c2) c
k0

log2(t) = e−(c−2c2+o(1)) c
k0

log2(t).

Again, this has finite sum. We conclude:

P(∀t,∃s ≥ t : N2(s)> (1+ 3c)λs) = 0.

This concludes the proof.

14.B.3 Proof of Theorem IV.25

Proof of Theorem IV.25. We conclude that Thompson Sampling has optimal sliding regret. Fix
T ≥ 1. Combining Lemma 14.B.2 and Lemma 14.B.3, we see that for all ε > 0, there exists a
sequence of events (Eεt ) with P(lim inf Eεt ) = 1, and such that:

P
�

At = 2 | Eεt
�

≤ e−(1−ε) log(t) =
1

t1−ε .
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Since all arms are visited infinitely often, eventually T is negligible in front of N2(t), meaning
that for all partial history Ht:t+h = ht:t+h over [t, t + h] (with h≤ T), we will have

P
�

At+h = 2 | Eεt , Ht:t+h = ht:t+h

�

≤
1

t1−ε .

Conclude with Theorem IV.24.

14.C Analysis of UCB

14.C.1 The asymptotic regime of UCB

Proposition IV.27. For all ε > 0 and when running UCB, both of the following hold:

(1) P(∃t,∀s ≥ t : ∀a, |µa(s)−µa(s)|< ε) = 1;

(2) P
�

∃t,∀s ≥ t :
�

�

�N2(t)− 2
�

1
µ1−µ2

�2
log(t)

�

�

�< ε · 2
�

1
µ1−µ2

�2
log(t)

�

= 1.

Proof of Proposition IV.27. Because UCB has sublinear expected regret, all arms are visited in-
finitely often by Proposition 14.A.1, hence by the Strong Law of Large numbers, the empirical
estimates of every arm converge to their true means. This proves Proposition IV.27.1. We will
denote Eεt := (∀a : |µ̂a(t)−µa|< ε). We now focus on the proof of Proposition IV.27.2. Denote
λt := 2

(µ1−µ2)2
log(t) the theoretical visit rate of arm 2

(STEP 1) Let ε > 0. We show that the event (N2(t)> (1− ε)λt) holds eventually. As usual,
we proceed by considering the complementary event. Let δ > 0. Remark that if the arm a = 2
has been visited less than (1− ε)λs times, then the other arm a = 1 must have been pulled
within the time range {s−λs − 1, s}, hence within [1

2s, s] provided that s is large enough. Since
λs = o(s), we can in addition assume that when a = 1 is pulled, N1(s)≥

1
2s. Accordingly, and

denoting Fεu := (N2(u)≤ (1− ε)λs)∩ (N1(u)≥
1
2s) for short, we have:

(−) := P(∀t,∃s ≥ t : N2(s)≤ (1− ε)λs)
= lim

t→∞
P(∃s ≥ t : N2(s)≤ (1− ε)λs, )

≤ lim
t→∞

P
�

∃s ≥ t,∃u ∈ [1
2s, s] : N2(u)≤ (1− ε)λs, N1(u)≥

1
2s, Au = 1

�

= lim
t→∞

P

�

∃s ≥ t,∃u ∈ [1
2s, s] : Fεu , Eδu , µ̂2(u) +

√

√2 log(u)
N2(u)

≤ µ̂1(u) +

√

√2 log(u)
N1(u)

�

≤ lim
t→∞

P



∃s ≥ t,∃u ∈ [1
2s, s] : µ2 −δ+

√

√

√

√

2 log(1
2s)

2(1−ε)
(µ1−µ2)2

log(s)
≤ µ1 +δ+

√

√

√
2 log(s)

1
2s





≤ lim
t→∞

1





µ1 −µ2p
1− ε

·

√

√

√ log(1
2 t)

log(t)
≤ µ1 −µ2 + 3δ



.

In the above, δ > 0 can be chosen arbitrarily small. Since
p

1− ε < 1, we see that by choosing
δ small regarding ε, we obtain P(∀t,∃s ≥ t : N2(s)≤ (1− ε)λs) = 0.

(STEP 2) Let ε > 0. We now show that the event (N2(t)< (1+ ε)λt) holds eventually. Let
δ > 0. Observe that if N2(s) ≥ (1+ ε)λs, then arm 2 must have been pulled within the time
range {(1+ ε)λs, . . . , s} with N2(u)≥ (1+ ε)λs. Following this idea, we obtain:

(−) := P(∀t,∃s ≥ t : N2(s)≥ (1+ ε)λs)
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≤ lim
t→∞

P(∃s ≥ t,∃u ∈ [(1+ ε)λs, s] : N2(u)≥ (1+ ε)λs, Au = 2)

= lim
t→∞

P
�

∃s ≥ t,∃u ∈ [(1+ ε)λs, s] : Eδu , N2(u)≥ (1+ ε)λs, Au = 2
�

≤ lim
t→∞

P

�

∃s ≥ t,∃u ∈ [(1+ ε)λs, s] : µ2 +δ+ (µ1 −µ2)

√

√ log(u)
(1+ ε) log(s)

≥ µ1 −δ

�

≤ lim
t→∞

1(
µ1 −µ2p

1+ ε
≥ µ1 −µ2 − 2δ).

The above indicator is asymptotically 0 when δ is small enough.

14.C.2 The sliding regret of UCB: Proof of Lemma IV.28

As given by Proposition IV.27, the asymptotic regime is denoted

Eεt := (∀a : |µ̂a(t)−µa|< ε)∩
�

N2(t) =
2·(1±ε)
(µ1−µ2)2

log(t)
�

Denote Ia(t) := µ̂a(t) +
p

2 log(t)/Na(t) UCB’s index of arm a.

Lemma 14.C.1. Let Gt:t+h := (∀i < h, At+i = 2). For all ε > 0 and h ≥ 1, there exists δ, T > 0
such that, for all t > T and on Eδt ∩ Gt:t+h, we have:

�

�

�

�

�

(I1(t + h)− I2(t + h))−

�

I1(t)− I2(t)−

∑

i<h(Rt+i −µ2 −
µ1−µ2

2 )

N2(t)

�

�

�

�

�

�

≤
2hε

N2(t)
.

Proof. Fix ε > 0. (STEP 1) The time variations of UCB’s indexes are given by:

Ia(t + h)− Ia(t) = (µ̂a(t + h)− µ̂a(t)) +

�√

√2 log(t + h)
Na(t + h)

−
√

√2 log(t)
Na(t)

�

This is split into two terms. There is the variation of the empirical estimate, and the variation
of the optimistic bonus. Considering arm 1, since N1(t + h) = N1(t) on Gt:t+h, we get, when
t →∞,

I1(t + h)− I1(t) =

√

√ 2
N1(t)

�
Æ

log(t + h)−
Æ

log(t)
�

∼
h
t

p

2 log(t)N1(t)
= o

�

h

t
p

N1(t)

�

.

This will appear to be negligible in comparison to I2(t + h)− I2(t).
(STEP 2) We know bound the variations of the empirical estimates of arm 2. We have:

µ̂2(t + h)− µ̂2(t) =

∑

i<h Rt+i − hµ̂2(t)
N2(t) + h

=

∑

i<h(Rt+i −µ2)
N2(t) + h

+
h(µ2 − µ̂2(t))

N2(t) + h
.

Because arms are visited infinitely often, we have µ2 −µ2(t)< ε eventually, with ε > 0 fixed.
Since, N2(t) + h∼ N2(t), hence, when t →∞ and for δ > 0 small regarding ε, on Eδt ∩ Gt:t+h,
we have:

�

�

�

�

µ̂2(t + h)− µ̂2(t)−
∑

i<h Rt+i −µ2

N2(t)

�

�

�

�

≤
hε

N2(t)
a.s.
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(STEP 3) We now bound the variation of the optimistic bonus of arm 2,
√

√2 log(t + h)
N2(t + h)

−
√

√2 log(t)
N2(t)

=

√

√2 log(t + h)
N2(t + h)

−
√

√ 2 log(t)
N2(t + h)

+

√

√ 2 log(t)
N2(t + h)

−
√

√2 log(t)
N2(t)

∼ o
�

h
tN2(t)

�

+
h

2N2(t)

√

√2 log(t)
N2(t)

.

Provided that δ > 0 is small enough, we have on Eδt :
�

�

�

�

�

√

√2 log(t + h)
N2(t + h)

−
√

√2 log(t)
N2(t)

−
h(µ1 −µ2)

2N2(t)

�

�

�

�

�

≤
hε

N2(t)

(STEP 4) All together, on Eδt ∩ Gt:t+h, we have:

I1(t + h)− I2(t + h) = I1(t)− I2(t)−

∑

i<h(Rt+i −µ2 −
µ1−µ2

2 )

N2(t)
±

2hε
N2(t)

.

This proves the claim.

We prove Lemma IV.28 as a corollary below.

Lemma IV.28. Consider running UCB, and fix h > 0. There exists a sequence of events
indexed by exploration episodes (Eτk

) with P(lim infk Eτk
) = 1, such that, for all sequence

(Ut : t ≥ 1) of σ(Ht)-measurable events:

P
�

∀i < h : Aτk+i = 2 | Eτk
, Uτk

�

≥ µh
2.

Proof. Fix h> 0 and let δ(h), T (h)> 0 as given by Lemma 14.C.1 for some arbitrary ε > 0. Let
G′t:t+h := (∀i < h, Rt+i = 1), stating that every arm pull over [t, t + h) provides full reward. On

Eδ(h)t ∩ Gt:t+h ∩ G′t:t+h with t ≥ T (h), we have:

I1(t + h)≤ I2(t + h) + (I1(t)− I2(t)) +

∑

i<h

�

µ2 +
µ1−µ2

2 + ε− 1
�

N2(t)
.

For t ≡ τk an exploration episode with τk, as I1(τk)≤ I2(τk) (by definition), we obtain:

I1(τk + h)≤ I2(τk + h) +

∑

i<h

�

µ2 +
µ1−µ2

2 + ε− 1
�

N2(τk)
.

We see that taking ε < µ1−µ2
2 , the summand is always negative, and as a consequence, I1(τk+h)≤

I2(τk+h). So on 1(τk > T (h))∩Eδ(h)τk
, if every pull of the suboptimal arm a = 2 over [τk,τk+h)

provides a full reward Rt = 1, then Aτk+h = 1. More formally:

1(τk ≥ T (h))∩ Eδ(h)τk
∩ Gτk:τk+h ∩ G′τk:τk+h = 1(τk ≥ T (h))∩ Eδ(h)τk

∩ Gτk:τk+h+1 ∩ G′τk:τk+h

Now choose δ := mini≤hδ(i) and T := maxi≤h T(i). The event Eτk
:= Eδτk

∩ 1(τk ≥ T) is
σ(Hτk

)-measurable, and we see that:

(−) := P(∀i < h : Aτk+i = 2 | Eτk
, Uτk

)
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≥ P(∀i < h : Aτk+i = 2, Rτk+i = 1 | Eτk
, Uτk

)

=
∏

i<h

P
�

Rτk+i = 1 | Aτk+i = 2
�

P
�

Aτk+i = 2 | Gτk:τk+i, G′τk:τk+i, Eτk
, Uτk

�

=
∏

i<h

P
�

Rτk+i = 1 | Aτk+i = 2
�

= µh
2.

Moreover, because τk < τk+1, the event (τk > T) is eventually true as k→∞, meaning that
P(lim infk Eτk

) = 1. This establishes the claim.

14.C.3 Waiting for UCB to fail: Proof of Proposition IV.30

We recall the statement below.

Proposition IV.30. Fix h > 0 and assume that we are running UCB. There exists an
increasing sequence of almost-surely finite stopping times (σk : k ≥ 1) s.t.,

P(Reg(σk;σk + h)≥ (µ1 −µ2)h) = 1.

Proof. Fix h ≥ 0. Let ℓ > ⌈ µ1h
1−µ1
⌉ and ε < µ1−µ2

2 . Consider τk an exploration episode. Assume

that Fτk:τk+ℓ := (∀i < ℓ : Aτk+i = 2, Rτk+i = 1) holds, which is of probability at least µℓ2 on the
event Eτk

given by Lemma IV.28. From Lemma 14.C.1, almost surely, we have:

I1(τk + ℓ+ i)≤ I2(τk + ℓ+ i)−
ℓ(1−µ1)

N2(t)
+

hµ1

N2(t)
< I2(τk + ℓ+ i).

Thus Eτk
∩ Fτk:τk+ℓ ⊆ (∀i < h : Aτk+ℓ+i = 2) almost surely, and in particular P(Reg(τk + ℓ;τk +

ℓ+ h)≥ (µ1 −µ2)h | Eτk
, Fτk:τk+ℓ) = 1. Since P(Fτk:τk+ℓ | Eτk

)≥ µℓ2 by Lemma IV.28, we deduce
by Borel-Cantelli’s Lemma that P(lim supk(Eτk

∩ Fτk;τk+ℓ)) = 1. Hence, define

σ1 := inf
�

τk + ℓ : Eτk
∩ Fτk:τk+ℓ

	

, σn+1 := inf
�

τk + ℓ > σn : Eτk
∩ Fτk:τk+ℓ

	

.

We see that σn is a stopping time. Moreover, we have P(σn <∞) and P(Reg(σn;σn + h) ≥
(µ1 −µ2)h) = 1 by construction.

14.C.4 The regret of exploration of UCB: Proof of Theorem IV.33

This section is dedicated to a proof of:

Theorem IV.33. Let (X t : t ≥ 1) a sequence of i.i.d. random variables with distribution
B(µ2). Let σT the stopping time T ∧ inf

�

t ≥ 1 : −µ1−µ2
2 + 1

t

∑t
i=1(X t −µ2)≤ 0

	

. For all
T ≥ 1, we have RegExp(UCB; T ) = limk→∞ E[Reg(τk;τk + T )]≥ (µ1 −µ2)E[σT ].

Again, as given by Proposition IV.27, the asymptotic regime is denoted

Eεt := (∀a : |µ̂a(t)−µa|< ε)∩
�

N2(t) =
2·(1±ε)
(µ1−µ2)2

log(t)
�

Denote Ia(t) := µ̂a(t) +
p

2 log(t)/Na(t) UCB’s index of arm a, similarly to previous sections.
We begin by establishing a variant of Lemma 14.C.1 for time-periods when only the optimal
arm is being pulled.



Chapter 14. Beyond the regret of exploration: The Sliding Regret 271

Lemma 14.C.2. Let Ft:t+h := (∀i < h, At+i = 1). Fix arbitrary ε > 0 and h ≥ 1. There exists
δ, T > 0 such that, whenever t > T and for all ℓ < h, on Eδt ∩ Ft:t+ℓ we have:

�

�

�

�

(I1(t + ℓ)− I2(t + ℓ))−
�

I1(t)− I2(t) +

∑

i<ℓ(Rt+i −µ1)
t

��

�

�

�

≤
2ℓε

t
.

Proof. The proof is essentially similar to the one of Lemma 14.C.1: Approximate Ia(t+ℓ)− Ia(t)
using equivalents in the asymptotic regime. Using that N1(t)∼ t and N2(t)∼

2
(µ1−µ2)2

log(t), we
find that the dominant term in the variations of I1(t + ℓ)− I2(t + ℓ) with respect to ℓ is the one
coming from the variations of the best arm’s empirical estimate.

I1(t + ℓ)− I1(t) =

∑

i<ℓ(Rt+i −µ1)
t

+ o
�

ℓ

t

�

I2(t + ℓ)− I2(t) =
ℓ(µ1 −µ2)
2t log(t)

+ o
�

ℓ

t log(t)

�

.

Quantifying the equivalents with ε > 0, we obtain the statement of Lemma 14.C.2.

Proof of Theorem IV.33. Recall that (X t : t ≥ 1) denotes a sequence of i.i.d. random variables
with distribution B(µ2). Fix h≥ 1 and denote the exploitation episodes (τ′k) as:

τ′k := inf{t > τk : At = 1, At−1 = 2}.

It is obvious that E[Reg(τk;τk+h)]≤ (µ1−µ2)E[min(τ′k−τk, h)], hence we are ought to bound
E[min(τ′k − τk, h)] which is related to the expected duration of the k-th exploration episode
clipped to [0, h]. From Lemma 14.C.2 follows that at the beginning of an exploration episode
τk and on Eετk

for ε (resp. τk) small enough (resp. large enough), we have:

0≤ I2(τk)− I1(τk)≤
2
τk

.

Furthermore, if Aτk+ℓ = 1, then I2(τk + ℓ)− I1(τk + ℓ) ≤ 0, so combined with Lemma 14.C.1
and denoting ν0 := µ1+µ2

2 , it implies that

∑

i<ℓ

(Rτk+i − ν0)≤ 2ℓε+
2N2(τk)
τk

where Rτk+i ∼ B(µ2). Provided that τk is large enough (i.e., that k is large enough), this in
particular implies that

∑

i<ℓ(Rτk+i − ν0)≤ 3hε. Since ε can be chosen arbitrarily close to 0, we
deduce that, for all ε > 0,

lim inf
k→∞

E[Reg(τk;τk + h)]≥ (µ1 −µ2)E

�

inf

¨

t ≤ h :
∑

i<t

(X t − ν0)≤ ε

«�

Since
∑

i<t(X t − ν0) takes finitely many values when t ≤ h, we have:

inf
ε>0

E

�

inf

¨

t ≤ h :
∑

i<t

(X t − ν0)≤ ε

«�

= E

�

inf

¨

t ≤ h :
∑

i<t

(X t − ν0)≤ 0

«�

This proves the result.

14.D General index theory

We write Xa(t) any data relative to the arm a, and X−a(t) any data relative to the other arm.
The index of arm a is thus denoted Ia, while I−a denotes the one of the other arm.
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14.D.1 Proof of Lemma IV.34

Lemma IV.34. Assume that I(−) satisfies (A 1-3). Then, for a = 1, 2, µ̂a(t)→ µa a.s.

Proof of Lemma IV.34. (STEP 1) We start by showing that both arms are visited infinitely often,
that is, for a = 1, 2 and for a fixed arbitrary n, P(∃t : Na(t)≥ n) = 1. By the Strong Law of Large
Number (SLLN, or just time-uniform concentration inequalities), the result will follow. Consider
the complementary event. Remark that if Na(t)< n, there must be s ∈ {t − n, . . . , t} such that
As ̸= a. So, we have, for δ > 0 small enough,

(−) := P(∀t : Na(t)< n)
≤ P(∀t,∃s ≥ t − n : Na(s)< n, As ̸= a)
= lim

t→∞
P(∃s ≥ t − n : Na(s)< n, Ia(µ̂(s), Na(s), s)≤ I−a(µ̂(s), N−a(s), s))

= lim
t→∞

P(∃s ≥ t − n : Ia(µ̂(s), n, s)≤ I−a(µ̂(s), s− n, s), N−a(s)≥ s− n) (A 1)

≤ lim
t→∞

P(∃s ≥ t − n : Ia(µ̂(s), n, s)≤ I−a(µ̂(s), s− n, s), |µ̂−a(s)−µ−a| ≤ δ) (SLLN)

≤ lim
t→∞

P(∃s ≥ t − n : Ia(0,µ−a −δ, n, s)≤ I−a(µ−a +δ, 1, s− n, s)) (A 1)

≤ lim
t→∞

P
�

∃s ≥ t − n : Ia(0,µ−a −δ, n, s)≤ I(µ1, 1) + o
δ→0
(1)
�

(A 3)

= 0. (A 2)

(STEP 2) Since all arms are pulled infinitely often, the empirical estimates must converge to
the mean values by the Strong Law of Large Numbers.

14.D.2 Proof of Lemma IV.35

Lemma IV.35. If I(−) satisfies (A 1-6), then (µ̂1(t), µ̂2(t), N1(t), N2(t))∼ (µ1,µ2, t, n2(t))
a.s. The sequence t 7→ (µ1,µ2, t, n2(t)) will be called the asymptotic regime.

Proof of Lemma IV.35. Since n2(t) is sublinear, we only have to show the property on N2(t) and
everything will follow.

(STEP 1) Let ε > 0 and focus on a = 2 the suboptimal arm. For conciseness, denote
c := 1− ε. Similarly to the previous point, remark that if N2(s) < cn2(s), there must be some
u ∈ {s− cn2(s), . . . , s} when Au ̸= 2. Let Fδt := (∀a, |µ̂a(t)− µa| < δ) the concentration event,
proved to hold eventually, as given by Lemma IV.34. We then have:

(−) := P(∀t,∃s ≥ t : N2(s)< cn2(s))
≤ lim

t→∞
P(∃s ≥ t,∃u≥ s− cn2(s) : N2(s)≤ cn2(s), I2(u)≤ I1(u))

≤ lim
t→∞

P
�

∃s ≥ t,∃u≥ s− cn2(s) : N2(s)≤ cn2(s), I2(u)≤ I1(u), Fδs
�

(Lem. IV.34)

≤ lim
t→∞

P



∃s ≥ t,∃u≥ s− cn2(s) :
I(µ2 −δ,µ1 +δ, cn2(s), u)

≤
I(µ1 +δ,µ2 −δ, u− cn2(s), u)



 (A 1)

≤ lim
t→∞

P

�

∃s ≥ t,∃u≥ s− cn2(s) :
I(µ2 −δ,µ1 +δ, cn2(s), u)

≤
�

1+ o
δ→0
(1) + o

t→∞
(1)
�

I(µ1,µ2)

�

(A 3,6)

≤ lim
t→∞

P
�

∃s ≥ t,∃u≥ s− cn2(s) :
I(µ2 −δ,µ1 +δ, (1− ε)n2(s), u)

≤ (1+ o(1))I(µ2 −δ,µ1 +δ, n2(s), s)

�

(A 4)
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≤ lim
t→∞

P
�

∃s ≥ t,∃u≥ s− cn2(s) :
(1+ ℓ(ε))I(µ2 −δ,µ1 +δ, n2(s), s)
≤ (1+ o(1))I(µ2 −δ,µ1 +δ, n2(s), s)

�

(A 5)

≤ lim
t→∞

P
�

∃s ≥ t,∃u≥ s− cn2(s) : 1+ ℓ(ε)≤ 1+ o
δ→0
(1) + o

t→∞
(1)
�

= 0. (δ→ 0)

(STEP 2) Let ε > 0 and focus on a = 2 the suboptimal arm. This time, denote c := 1+ ε.
The analysis is mostly similar, but the initial decomposition starts differently. Remark that if
N2(s)> cn2(s), then there must be u ∈ {cn2(s), . . . , s} such that Au = 2. So,

(−) := P(∀t,∃s ≥ t : N2(s)≥ cn2(s))
≤ lim

t→∞
P(∃s ≥ t,∃u ∈ [cn2(s), s] : N2(u)≥ cn2(s), Au = 2)

≤ lim
t→∞

P(∃s ≥ t,∃u ∈ [cn2(s), s] : N2(u)≥ cn2(s), I2(u)≥ I1(u))

≤ lim
t→∞

P(∃s ≥ t,∃u ∈ [cn2(s), s] : I2(µ̂(u), cn2(u), u)≥ I1(µ̂(u), u, u)) (A 1)

≤ lim
t→∞

P
�

∃s ≥ t,∃u ∈ [cn2(s), s] : I2(µ̂(u), cn2(u), u)≥ I1(µ̂(u), u, u), Fδu
�

≤ lim
t→∞

P
�

∃s ≥ t,∃u ∈ [cn2(s), s] : I2(µ̂(u), cn2(u), u)≥ (1+ o(1))I(µ1,µ2), Fδu
�

(A 3)

≤ lim
t→∞

P



∃s ≥ t,∃u ∈ [cn2(s), s] : Fδu ,
I2(µ̂(u), (1+ ε)n2(u), u)

≥
(1+ o(1))I2(µ̂(u), n2(u), u)



 (A 4)

≤ lim
t→∞

P
�

∃s ≥ t,∃u ∈ [cn2(s), s] : 1− ℓ(ε)≥ 1+ o
δ→0
(1) + o

t→∞
(1)
�

(A 5)

= 0. (δ→ 0)

So, t 7→ N2(t) converges to t 7→ n2(t) almost-surely for the asymptotic topology.
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Conclusion, Past and Future Works

Every document eventually ends. Yet so much could still be said. At the end of every part, I have
already listed a few research directions that I believe to be promising. In the lines below, we take
a few steps back from this heavy manuscript and discuss research directions more informally,
and extend on a few shortcomings that the current literature suffers from.

We deepdived into the realm of Markov decision process under the average gain criterion,
aiming at minimizing the regret and have presented many new results. In the minimax setting,
the regret is scaling with the span of the bias function rather than the diameter, and the
minimax lower bound can be reached by an algorithm running in polynomial time with no
prior information. In the model dependent setting, the regret lower bound is a solution of an
optimization problem combining information and navigation constraints. We have explained
that minors play an important role, and that the navigational structure of Markov decision
processes makes important to distinguish between exploration, co-exploration and exploitation
to learn efficiently. The regret lower bound is shown tight, by providing an algorithm that
approaches it with arbitrary precision. Beyond regret minimization which is only a matter of
global performance, we pinpoint in the last part that the management of episodes is important
as well, provided that one is concerned about the local behavior of algorithms. To that end, we
design two new learning metrics (the regret of exploration and the sliding regret) to explain
and quantify how efficient algorithms behave locally.

So, what’s next?
Too much, actually.
To begin with, a fundamental theory is absent from the landscape described above: Bayesian

approaches to reinforcement learning. In such approaches, the underlying model is drawn
from a probability distribution instead of being fixed. The lowerbound-then-algorithm strategy
could also be applied to this setting. There are already a few results that follow this principle,
such as Lai (1987) for stochastic bandits. For Markov decision processes, I am very curious
about what can be obtained. PMEVI and ECoE, that are respectively asymptotically optimal in
the minimax and model dependent settings, are very different algorithms. They can hardly be
compared actually. As a matter of fact, the model dependent and model independent regret
lower bounds are extremely different in their structure. Would we find something different in
the Bayesian setting again? Can these bounds be reconciliated? Or, is there a crucial difference
of design between model dependent, minimax and Bayesian approaches? For stochastic bandits,
model dependent and independent optimalities are reconciliatable — This is known as the
best-of-both-worlds Bubeck and Slivkins (2012). There is also a parallel best-of-both-worlds for
the model dependent & Bayesian approaches, see Lai (1987), and it would not be surprising
if, for stochastic bandits at least, a best-of-three-worlds exists. For Markov decision processes,
this is much less clear, for reasons that I discuss more deeply in the conclusion of Part III. If for
communicating Markov decision processes, there is no best-of-three-worlds, then where is the
barrier?

At the back of the room, there is always someone that bargains about the asymptotic nature
of the analysis. Yes, the analysis provided in the model dependent and model independent
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settings are very asymptotic. It is often opposed to asymptotic analysis that it is important to
keep track of second order errors, and to report them. I would usually agree to this provided
that the process comes for free, i.e., that it does not deteriorate the quality and clarity of the
main focus of the proof. And yet, I would disagree with the idea. First, the size of second order
terms may be, or may be not, artifacts of the analysis. Second, these second order terms mix
asymptotic second order terms and transient terms. Hence, while they may tell that the analysis
is too asymptotic, they tell very little about how efficient learners should behave during the
transient stages of learning. Furthermore, in the conclusion of Part III, I claim that the model
dependent lower bound may itself be very asymptotic in nature. Behind this claim is the idea
that the information constraints of the lower bound are linked to Sanov’s Theorem, and that the
second order error in Sanov’s Theorem is known to be linked to the geometry of the set from
which we want to control the probability to fall into. This set is the set of confusing models. For
stochastic bandits, this set is a half-space and its geometry is trivial, leading to small second
order errors. For Markov decision processes, it is non-convex and its geometry may be awful. If
the regret lower bound of Markov decision processes is too asymptotic in nature, then controlling
the second order term is irrelevant. This encourages the development of learning theories that
are specifically designed to understand how a learner should behave during the earlier stages of
learning. Such theories would probably be closer to Bayesian approaches, and should not be
mistaken for minimax approaches.

The last part of this document, which is about local regret guarantees, tries to escape
the prison of standard regret minimization. Not everything is about regret minimization. To
that extent, the various behaviors described in Part IV are arguably more important than the
introduced learning metrics. The various questions related to how the trajectorial behaviors of
classic algorithms may be studied, classified and quantified, seem very promising. The regret
of exploration and the sliding regret are simple metrics that barely scratch the surface of what
could be done. In the conclusion of Chapter 14, we explain that these two metrics fail to capture
the very specific behavior of a few algorithms such as EXP3. The proper way to address that
issue is still completely open.

And all this is only if we stick to the neighborhood of regret minimization concerns.
I defer the discussion of more practical, or instantaneous, research directions to the dedicated

conclusion of every part of this manuscript, that are better places to discuss the direct follow-ups
of well-confined collections of results.
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This manuscript is a compilation a several works that I have completed during my PhD, yet
not all of my works are covered. I provide a list of my main publications below. Works that
are tagged as “not covered” are those of which the content does not appear in the present
manuscript. Such works are put aside as they do not fit the story-line of the manuscript, which
is exclusively about regret minimization in Markov decision processes.

Boone, V. and Gaujal, B. (2023a). Identification of Blackwell Optimal Policies
for Deterministic MDPs. In Ruiz, F., Dy, J., and van de Meent, J.-W., editors,
Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learning Research, pages
7392–7424. PMLR
Not covered.
Abstract. This work investigates the probably correct (PC) identification of
Blackwell optimal policies in deterministic transition Markov decision pro-
cesses, where the goal of the learner is to gather information and eventually
stop to return a policy that has to be Blackwell optimal Blackwell (1962)
with a fixed probability. We show that Blackwell optimal policies cannot be
identified with arbitrarily high confidence unless the model is non-degenerate
(Definition IV.3), in which case Blackwell optimality collapses to bias optimality
(Definition I.9). We provide model-dependent lower and upper bounds on the
number of samples required to identify such policies.

Boone, V. and Gaujal, B. (2023b). The Regret of Exploration and the Control of
Bad Episodes in Reinforcement Learning. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J., editors, Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 2824–2856. PMLR
See Chapters 11 and 12.
Abstract. This paper is the first of the line of work on local regret consid-
erations. It explains why the doubling trick is not satisfying, introduces the
regret of exploration (Definition IV.2), the performance test (PT), provides
minimax regret guarantees for UCRL-PT and regret of exploration guarantees
for UCRL-PT when the underlying model has deterministic transitions.

Boone, V. (2023). The Sliding Regret in Stochastic Bandits: Discriminating Index
and Randomized Policies. arXiv:2311.18437 [cs, eess, math, stat]
See Chapter 14.
Abstract. This paper is mostly similar to Chapter 14. We investigate the tra-
jectorial behavior of standard algorithms for stochastic bandits. We introduce
the sliding regret (Definition IV.7) that measures the worst local regret of
the algorithm on a trajectory. We show that index algorithms such as UCB,
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UCB-V, IMED and KL-UCB have linear sliding regret, resulting in infinitely
many bursts of suboptimal play that may last arbitrarily long; While random-
ized algorithms such as TS and MED have optimal sliding regret, meaning that
they play suboptimal actions sporadically.
This paper is under review at JMLR.

Boone, V. and Mertikopoulos, P. (2024). The equivalence of dynamic and strategic
stability under regularized learning in games. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc
Not covered.
Abstract. This paper is not about reinforcement learning in Markov decision
process hence is completely absent from the manuscript — This further requires
to explain in more details what is done in this work. In this paper, we examine
the long-run behavior of regularized, no-regret learning in finite games. A
well-known result in the field states that the empirical frequencies of no-regret
play converge to the game’s set of coarse correlated equilibria; however, our
understanding of how the players’ actual strategies evolve over time is much
more limited - and, in many cases, non-existent. This issue is exacerbated by
a series of recent results showing that only strict Nash equilibria are stable
and attracting under regularized learning, thus making the relation between
learning and pointwise solution concepts particularly elusive. In lieu of this,
we take a more general approach and instead seek to characterize the setwise
rationality properties of the players’ day-to-day play. To that end, we focus
on one of the most stringent criteria of setwise strategic stability, namely that
any unilateral deviation from the set in question incurs a cost to the deviator -
a property known as closedness under better replies (club). In so doing, we
obtain a far-reaching equivalence between strategic and dynamic stability: a
product of pure strategies is closed under better replies if and only if its span
is stable and attracting under regularized learning. In addition, we estimate
the rate of convergence to such sets, and we show that methods based on
entropic regularization (like the exponential weights algorithm) converge at
a geometric rate, while projection-based methods converge within a finite
number of iterations, even with bandit, payoff-based feedback.

Boone, V. and Zhang, Z. (2024). Achieving Tractable Minimax Optimal Regret in
Average Reward MDPs. _eprint: 2406.01234
See Chapter 7.
Abstract. In this paper, we present the first tractable algorithm with minimax
optimal regret of O(

p

sp(h)SAT log(T )) without relying on prior knowledge.
The algorithm relies on a novel subroutine, PMEVI (see Algorithm II.5) to
compute bias-constrained optimal policies efficiently, improving on EVI from
Auer et al. (2009). This subroutine can be applied to various previous algo-
rithms to improve their regret bounds. The content of this paper is mostly
similar to Chapter 7.
This paper has been accepted at NeurIPS 2024.

Boone, V. and Gaujal, B. (2024+). Local regret guarantees in average reward
markov decision processes. To be submitted
See Chapter 13.
Abstract. This paper goes beyond Boone and Gaujal (2023b). The theory
on the regret of exploration is more complete, with a concern about the
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generality of the definition and the well-definition of the regret of exploration
for general episodic algorithms. It suggests to replace the performance test by
the vanishing multiplicative condition (VM) and provides a general analysis
based on coherence (Definition IV.5) with a strong emphasis on the shrinking-
shaking effect. The content of this paper is mostly similar to Chapter 13.

Boone, V. and Maillard, O.-A. (2024+). Lower bound of the regret for communi-
cating markov decision processes. To be submitted
See Part III.
Abstract. The content of this paper is mostly similar to Part III. We provide
a model dependent regret lower bound for Markov decision processes in
the communicating setting together with a few approximations of it. The
lower bound is shown to be optimal with the introduction of a new algorithm
scheme, ECoE, of which the asymptotic expected regret is arbitrarily close to
the lower bound. We additionally show that the computation of the lower
bound, together with associated sub-problems, is computationally hard.
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Abstract

In this manuscript, we investigate the problem of regret minimization in Markov decision
processes under the average gain criterion. In both the model independent (aka minimax)
and model dependent settings, we provide new lower bounds on the expected regret as well
as algorithmic methods achieving them — hence being optimal. Beyond regret minimization,
we further study the trajectorial behavior of classical algorithms from a novel local viewpoint,
through the lens of new learning metrics that quantify how algorithms choose actions locally
rather than globally.

Résumé

Cette thèse est dédiée à la minimisation du regret dans les processus de décisions Markoviens
en gain moyen. On y développe des bornes inférieures sur le regret en espérance, ainsi que
des algorithmes atteignant les-dites bornes et de ce fait optimaux, dans deux cas fréquentistes
classiques: le cas où le modèle est fixé et où la borne dépend du modèle, et le cas minimax où la
borne s’applique uniformément à l’intégralité de la classe considérée. Au delà de la minimisation
du regret, on étudie également le comportement local d’algorithmes classiques que le regret
échoue à capturer, puisque intrinsèquement global. De nouvelles mesures de performances sont
introduites dans cette optique.
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